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NPS Vital Sign Monitoring network is available at NPS 2005. Vital Sign Monitoring 
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Introduction 

 
The discussion herein covers many of the same topics covered in the broader and 

less up to date version of Part B [Irwin, R.J. (2004). Vital Signs Long-Term Aquatic 
Monitoring Projects: Part B. Planning Process Steps: Issues to consider and then 
document in a monitoring plan including monitoring protocols and standard operating 
procedures (SOPs) for Quality Assurance/Quality Control (QA/QC). Water Resources 
Division]. 

Some found the original Part B to be too long, while others complained when it 
was shortened, suggesting explanations be included. Part B is still available as a broader 
resource that is aimed more at the whole planning process.  

Part B lite (herein) is intenteded to be complete guidance optimized for use when 
developing protocol narratives and attached SOPs. Although an original goal was to 
make the lite version ‘short’, by popular demand sections that more completely explain 
complex issues have gradually been added. When the choice was between short vs. clear 
or complete, short did not prevail. This was done many times thoughout the document 
and therefore, “lite” no longer means short.  

Other NPS WRD guidance documents (Parts A, C, D. and E) are listed as links 
from NPS WRD Guidance Documents. 

As suggested in generic VS guidance (K.L. Oakley, L.P. Thomas, and S.G. 
Fancy, 2003. Guidelines for long-term monitoring Protocols. Wildlife Society Bulletin 
31(4), all protocols should include:  
 

A. Protocol Narrative  
B. Protocol Standard Operating Procedures (SOPs), and   
C. Protocol Supplementary Materials 
 
An important item on any protocol review is whether or not the protocol follows 

the organization above, is complete, and has a table of contents that helps one determine 
where things are. We recommend that a QA/QC SOP be included that covers most of the 
topics covered herein. For those networks who want to follow state and EPA 
conventions, the QA/QC SOP could also be called a quality assurance project plan 
(QAPP) SOP.  

Many of the QA topics covered in the first sections herein are touched on briefly 
in the protocol narrative, often with more detail in the QA/QC SOP. The QC topics (from 
comparability on down herein) can be covered primarily in the QA/QC SOP. Many of 
these topics are interrelated and the different pieces need to make sense when considered 
as a whole. Therefore, we recommend liberal use of “point-to” links to help readers 
understand the big picture and where the important pieces are. 

Either the protocol narrative or a separate SOP should include a discussion of who 
will do the monitoring and who will train them and how often (recurrent training and is 
Quality Assurance/QA basic). Is there a SOP that clearly defines protocol variables and how to 
measure them? 

The following text summarizes the basics of what has to be in water quality and 
other aquatic protocol SOPs to meet checklist (Checklist for Review of Vital Signs 
Monitoring Plans, hereafter referred to as “the checklist”) requirements.  

http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://www.nature.nps.gov/water/waterquality/
http://science.nature.nps.gov/im/monitor/TechnicalGuidance.cfm
http://www.nature.nps.gov/water/VitalSigns_index/VitalSignsdocuments.cfm
http://science.nature.nps.gov/im/monitor/protocols/ProtocolGuidelines.pdf
http://science.nature.nps.gov/im/monitor/docs/MonitoringPlanChecklist.doc
http://science.nature.nps.gov/im/monitor/docs/MonitoringPlanChecklist.doc
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This summary can also be used for the basics that should be included in Phase 1, 
2, and 3 monitoring plan chapters. In most cases, the planning process is iterative, with 
very general statements in the plan chapters becoming more detailed in the subsequent 
protocol narrative, and then even more detailed in SOPs. 

Among the basics that need to be covered in the narrative and SOPs are the 
following monitoring basics (adapted from USGS Managers' Monitoring Guide): 

 
WHAT are you going to measure?  
WHERE are you going to put your sampling points? 
HOW are you going to measure it? 
WHEN (and how frequently) are you going to measure it? 
 
One of the main originators of the survey design and response design concepts 

popular in EMAP and other survey design disciplines helpfully clarified the terminology 
distinctions as follows (Scott Urquhart, Department of Statistics, CSU, Personal 
Communication, 2005): 

 
What: Sampled Population and/or Target Population 
 
Where: Monitoring, Survey, or Sampling Design 
 
How (and Who) -- The Response Design. The response design incorporates 
numerous decisions about how to measure the attribute of interest accurately 
(Larsen, D. P., T. K. Kincaid, S. E. Jacobs and N. S. Urquhart (2001).  Designs 
for evaluating local and regional scale trends.  Bioscience 51:1069-1078). 
 
When (and how often) -- The Temporal Design (Although Larsen et al. 2001. op. 
cit. clarify that this should simply be part of the sampling design, others seem too 
often to simply overlook diel variation, changes with flow, and other important 
temporal aspects or aspects that directly or indirectly tend to drive variation or 
magnitude changes, often related to some temporal detail or upon some factor 
other than variability of changes over space. Even Larsen et.al. 2001 (op.cit.) 
seem to be stressing mostly looking only at changes in variability within one year 
versus across years, although they do state that “if concordant variation is high, 
neither revisiting sites within years nor adding sites can have much effect” (on 
getting smaller confidence intervals on trend magnitudes). .  
 
Splitting the design into response design vs. sampling design components is 

relatively new in the literature. However, regardless of the terminology used, in modern 
scientific thinking (as well as modern environmental monitoring planning), quality 
assurance is now correctly recognized as not just something that one thinks of at the last 
minute, as an afterthought at the end of planning. Instead it is now more broadly 
understood as a process which should influence the entire planning process. This includes 
summarizing what is already known, carefully thinking through the specific questions 
that need to be answered and then making sure the new data to be collected are optimally 

http://www.pwrc.usgs.gov/monmanual
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relevant, representative, comparable, and of adequate quality and quantity to meet study 
objectives.  

On one level, QA/QC is simply a very methodical system of making sure the 
monitoring design and SOPs are defendable and “make sense.” See Part B (the longer 
version of this document), for additional more detailed discussions of the entire planning 
process, and each part, and how all the pieces fit together. 

 . 
QUALITY ASSURANCE (QA): 

 
There are various ways to define QA. In a typical example, EPA defines QA as 

“an integrated system of management activities involving planning, implementation, 
documentation, assessment, reporting, and quality improvement to ensure”…quality 
(EPA. 2006. Guidance for the data quality objectives process. EPA/240/B-06/001,).  

Adequate training and qualifications help insure adequate QA, but not by 
themselves. Most quality assurance components are not measurable and are thus 
qualitative rather than quantitative, whereas most quality control (QC) measurement 
quality objectives are measurable and quantitative. In other words, the control in QC is 
based on Performance-Based Measurement Systems (PBMS). 

The International Union for Pure and Applied Chemistry (IUPAC) helpfully 
points out that “Quality assurance is meant to protect against failures of quality control.” 
In other words, if QA is not good enough, QC measurement quality objective standards 
may not be met. QA is therefore the guarantee that the quality of a product (analytical 
data set, etc.) is actually what is claimed on the basis of the quality control (QC) applied 
in creating that product. QC is then basically how one assures that the product meets or 
exceeds some minimum standard based on known, testable PBMS criteria.  

Another key concept in modern scientific thought is that QA relates to all the 
qualitative things that are done to ensure quality in the whole systematic planning and 
project management process and is not just a last minute task one does at the end of 
planning. It includes carefully thinking through the questions that need to be answered 
after summarizing what is already known, making sure the data collected are relevant, 
representative, comparable, and of adequate quality and quantity, and making sure the 
study design is defendable and “makes sense.” All of the steps outlined below are part of 
QA, but only measurable performance characteristics for data quality indicators like 
measurement precision, measurement bias, measurement sensitivity, and (for chemical 
measures only) blank control are typically also considered QC.  
 

I. Summary of Information from Past Data 
 

QA checklist question: For water quality monitoring, has information content of 
available past aquatic data (for each waterbody being considered for monitoring) been 
adequately summarized in terms of hints of trends or other important issues of concern? 
Networks should summarize available data including the data in NPS Horizon’s Reports 
(Baseline Water Quality Data Inventory & Analysis Reports). The word “hint” is used 
carefully here since old data is seldom perfectly definitive, complete, or perfectly 
comparable between agencies or time periods. 

http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://www.epa.gov/quality/qs-docs/g4-final.pdf
http://www.iupac.org/goldbook/Q04975.pdf
http://www.iupac.org/goldbook/Q04976.pdf
http://www.iupac.org/goldbook/Q04976.pdf
http://science.nature.nps.gov/im/monitor/docs/MonitoringPlanChecklist.doc
http://www.nature.nps.gov/water/horizon.cfm
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The emphasis should not only on what groups have been monitoring where and 
when, but also on “what does the data collected mean?” Again, what is the information 
content of the past data regarding hints of trends or issues of concern? Although this may 
have been briefly mentioned in chapter 1 of the central monitoring plan, typically more 
detail should be provided in protocol narratives. 

Other than Horizon’s reports for parks, insight on hints of issues or trends based 
on past data can be found in various State, Federal, and Regional Summary Reports. For 
example, those looking at coastal waters can look at summary reports from NOAA 
(National Estuarine Eutrophication Assessment --NEEA monitoring program) and EPA 
(Marine EMAP National Coastal Condition Reports). 

A table listing 303d waters should be included in the protocol narrative, along 
with a note that the most recent WRD Designated Use and Impairments Database 
(intranet link works on NPS computers only) has been consulted and that any differences 
with the vital sign network versions of the 303d lists have been logically reconciled. 
When possible, there should be more spatial detail (impaired from where to where?) in 
protocol narratives compared to related discussions in the background section in chapter 
1 of the central monitoring plan of each Vital Signs Network. 
 

II. Document Objectives and Questions 
 

Most NPS VS monitoring networks are using objectives based generally upon the 
five generic Specific, Measurable, Monitoring Objectives Goals of Vital Signs 
Monitoring (status and trends in selected indicators, etc.). In water quality, many of these 
common questions tend to be variations on one of the following themes: 

 
1) The common trend question: “Taking known seasonal changes and statistical 

power needs into account, is there a long term upward or downward trend in 
variable X?” 

2) The common status questions: “Does variable Y exceed acute water quality 
standards instantaneously (one time)?” or “Does variable Y exceed chronic water 
quality standards often enough to be considered in violation of the state water 
quality standard?” 
 
However, it is easiest to plan critical monitoring details if the general objectives in 

the central monitoring plan are rephrased into more detailed questions in each protocol 
narrative. A QA basic is that if the questions are sufficiently detailed, monitoring can 
more easily be planned in such a way that questions can be answered with the data 
collected. As monitoring protocols and SOPs are revised, it is important that the final 
more-detailed questions continue to make sense in comparison with summary discussions 
for representativeness and named target populations (or sampled populations) about 
which inferences will be made. 
 In the same general section where questions are being detailed, each protocol 
narrative should address the following checklist (Checklist for Review of Vital Signs 
Monitoring Plans) question: “Does the protocol narrative identify specific measurable 
objectives such as thresholds or trigger points for management actions?” When possible 

http://ian.umces.edu/neea/
http://www.epa.gov/owow/oceans/nccr/index.html
http://10.147.158.160/wrd/dui/
http://science.nature.nps.gov/im/monitor/docs/Goals&ObjectivesGuidance.doc
http://science.nature.nps.gov/im/monitor/docs/Goals&ObjectivesGuidance.doc
http://science.nature.nps.gov/im/monitor/docs/MonitoringPlanChecklist.doc
http://science.nature.nps.gov/im/monitor/docs/MonitoringPlanChecklist.doc


 9

the details of any such thresholds or trigger points should be fully explained in the 
protocol narrative.  
 An “ecological threshold” is generally said to be a rapid, non-linear change in 
system, while a “management threshold’ is a point at which an action is necessary (J. 
Gross, NPS, 2007 NARSEC Meeting Presentation). 

As was the case for questions, thresholds and trigger points should be discussed 
briefly in the protocol narrative and addressed in more detail in SOPs (such as the 
QA/QC or Data Analysis SOPs).  

For example, are the thresholds of concern water quality standards? If the 
threshold or comparison benchmark is a water quality standard that already has some 
safety margin built in, managers may still want to know when a standard is being closely 
approached. Therefore, the magnitude of the change that needs to be detected in trend 
analysis detect should typically be smaller than the entire distance between current 
condition and the standard. 

Is the threshold to be used a resource-collapse threshold value with no safety 
margin?  If so, an even bigger safety margin would usually need to be factored into 
decisions about how big of a change needs to be detected. What units will the safety 
margin use?  

Being able to detect a minimum detectable difference in original units (or an 
effect size expressed as a % of the magnitude of the standard deviation) of concern 
typically depends on variability of the data, sample size, alpha, and beta. These plus 
safety factors are input variables used to determine sample sizes and data completeness 
are usually covered in protocol narratives but should also be summarized in the QA/QC 
SOP.  

The process for determining these issues is complex, so a much more detailed 
step-by-step by identifying quantitative desired conditions vs. current conditions, 
threshold levels, and safety margins can be found farther below in the completeness 
section. 

Safety factors and thresholds should be covered at least briefly in the protocol 
narrative. If the network places details on these issues in the Data Analyses SOP or the 
QA/QC SOP, the network should also place a “point-to” marker in each protocol 
narrative so that readers can more easily find the more detailed discussions. 

The protocol narrative should also summarize which questions and/or sites were 
selected to ensure monitoring of a 303d impaired water body or a very pristine water 
body that the park wants to keep that way. WRD has suggested that at roughly 2/3 of the 
sites should be in one of those two categories (see Part A of this guidance). What 
monitoring will be done to help answer GPRA reporting goals?  
  

III. Document Vital Signs and Measures and How They Were Chosen 
 

The protocol narrative should have a brief recap (or point to where the 
information may be found) on what will be measured and how vital signs and measures 
were selected. Was a set of neutral selection criteria used, such as those listed in Kurtz et 
al. (J. C. Kurtz, Jackson, L. E., and W. S. Fisher. 2001 Strategies for evaluating indicators 
based on guidelines from the Environmental Protection Agency’s Office of Research and 
Development, Ecological Indicators 1:49–60)? 

http://science.nature.nps.gov/im/monitor/meetings/NARSEC_2007/presentations/02_JGross_Day1_NPS.pdf
http://science.nature.nps.gov/im/monitor/meetings/NARSEC_2007/presentations/02_JGross_Day1_NPS.pdf
http://www.nature.nps.gov/water/wobstaff.cfm
http://www.nature.nps.gov/water/Vital_Signs_Guidance/Guidance_Documents/wqPartA.pdf
http://science.nature.nps.gov/im/monitor/docs/EvalEcolIndic.pdf
http://science.nature.nps.gov/im/monitor/docs/EvalEcolIndic.pdf
http://science.nature.nps.gov/im/monitor/docs/EvalEcolIndic.pdf
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The neutral criteria used in picking vital signs and measures should be 
summarized in the protocol narrative. Among the criteria listed (and discussed 
individually) in the longer version of Part B are: 

 
Select Parameters Useful in Answering Questions 

Select Parameters Relevant to Values to be Protected 

Select Parameters that are Logical Parts of Multiple Lines of Evidence 

Select Direct Measures of Specific Causes of Impairment 

Consider Parameters Commonly Measured By Other Groups (Ideally, Select 
Parameters Having Regional Data Sets Collected and Analyzed the Same Way--
Using Identical Protocols to Ensure Data Comparability). 

Consider Parameters Identified as Key Ecological Drivers 

Select Measures with Known and Moderate Variability at Reference Sites. 

Select Measures with Acceptable Minimum Detectable Differences (Within 
Acceptable Time Periods in Trend Analyses, Monitoring Design Sensitivity)  

Select Practical and Measurable Parameters 

Select Simple and Explainable Parameters 

Select Relevant Forms of Parameters 

Consider Composite Samples to Minimize Cost and Integrate Variability 

Consider Integrative Biological Response Variables [Especially Those Found to 
be Useful in Observed to Expected (O/E) Ratios] 

 
A QA basic is that measures chosen should be helpful in answering stated 

monitoring questions. There should be a brief explanation in each protocol narrative of 
how the measures (typically level 3 Vital Signs) selected relate to both 1) values to be 
protected, and 2) desired conditions/ecological relevance. Which vital signs or measures 
were picked due to regulatory water quality impairment (303d lists, GPRA, etc. (Part A)? 

Selected measures should ideally be simple and explained in plain language in the 
protocol narrative (see Department of Water, Government of Western Australian 2004. 
Statewide Assessment of River Water Quality 2004 Methods for a good example of plain 
language explanations for nutrients, standard water column parameters and DOC). 

If comparison benchmarks are water quality standards or criteria, in what units are 
those benchmarks given by State or regional groups? A network may decide which 
specific subcategory and units of variables to measure based on the need to be fully 
comparable to the most relevant comparison benchmarks. Will the measures be total 
measures or dissolved measures? 

Other things being equal, measures picked for long term monitoring should 
ideally not have: 

 

http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://www.nature.nps.gov/water/Vital_Signs_Guidance/Guidance_Documents/wqPartA.pdf
http://apostle.environment.wa.gov.au/idelve/srwqa/methodology.htm
http://apostle.environment.wa.gov.au/idelve/srwqa/methodology.htm
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1. Very poor measurement uncertainty (poor measurement precision and/or 
unacceptable measurement bias) or poor measurement sensitivity (usually 
MDLs or AMS), or 

2. Extremely high true variability in the environment (from multiple different 
samples) at relatively un-impacted sites. This one directly effects the 
ability of a measure to be acceptable for overall monitoring design 
sensitivity. 

 
The first of these relates to sensitivity, a QA/QC basic, on the scale of each single 

data point. The second relates to sensitivity at the scale of the entire monitoring design. If 
the minimum detectable difference is a 200% change in two hundred years, consider 
“changing something.” Among the options might be dropping the metric or measure or 
restricting the strata being monitored in time and space to strata with lower true 
variability.  

For programs with limited monitoring budgets (= small sample sizes), excesses in 
either of these (or both) can prevent the detection of a true change of a magnitude of 
concern, or an optimal detection of a standards exceedance.  

However, a counter consideration is that very important variables should not 
necessarily be thrown out just because they are extremely variable. Among the lessons 
learned by EPA in a major Mid-Atlantic exercise was that although certainly statistical 
criteria can be desirable, not all such properties guarantee a predictable association with a 
stressor of concern (such as human disturbance, L.S. Fore. 2003, Developing Biological 
Indicators: Lessons Learned from Mid-Atlantic Streams, EPA/903/R-03/003).  

A commonly stated goal of Principal Components Analyses is to see if just few 
components account for most of the variance in the data. If fewer variables can be used 
without much loss of information, it simplifies data analyses. For ecological indicators, a 
bigger issue than variance is typically responsiveness to individual stressors. Many State 
agencies have gone through efforts (EPA. 2007 Biocriteria Homepage) to determine the 
most important stressors, often using approaches suggested by EPA (Stressor 
Identification Guidance).  

NPS can cite the lessons learned by the States and other Federal Agencies (for 
example, see the Wadeable Streams Assessment,WSA) when documenting why measures 
or indicators were thrown out or kept. However, even when a goal has been to use fewer 
variables without much loss of information and also to use neutral criteria to identify 
measures particularly associated with certain degraded habitats, stressors, or impairment 
in general, the methods have not always been fully explained. For example, in the WSA, 
EPA concluded that “The most widespread stressors observed across the country and in 
each of the three major regions are nitrogen, phosphorus, riparian disturbance, and 
streambed sediments. Increases in nutrients (e.g., nitrogen and phosphorus) and 
streambed sediments have the highest impact on biological condition; the risk of having 
poor biological condition was two times greater for streams” (EPA, 2007, Wadeable 
Streams Assessment (WSA), EPA Publication No. EPA 841-B-06-002). 

Those sound like a cause and effect types of conclusions, but not well explained 
in the WSA were: 

 
1) The relative risk (RR) and other statistics used to get to those conclusions, or  

http://www.epa.gov/bioindicators/pdf/MAIA_lessons_learned_biology.pdf
http://www.epa.gov/bioindicators/pdf/MAIA_lessons_learned_biology.pdf
http://www.epa.gov/waterscience/biocriteria
http://www.epa.gov/waterscience/biocriteria/stressors/stressorid.html
http://www.epa.gov/waterscience/biocriteria/stressors/stressorid.html
http://www.epa.gov/owow/streamsurvey/
http://www.epa.gov/owow/streamsurvey/
http://www.epa.gov/owow/streamsurvey/
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2) The fact that neither correlation nor other strengths of association (such as RR) are 
the same as causation.  

 
As is often better explained in human epidemiology (from which relative risk 

analysis was derived), the probability of causation (at any given single case) cannot be 
computed solely from the relative risk (S. Greenland. 1999. Relation of Probability of 
Causation to Relative Risk..). Concerning the relation of strength of association (such as a 
RR analysis) to causation or its role in causal inference, the two are related but far from 
the same (for more details, see Freedman 1999. From Association to Causation, and 
Rothman, K. J. S. Greenland, and T.L. Lash, eds. 2008. Modern Epidemiology, 3rd. ed. 
Lippincott-Raven, Chapters 2 and 4). These concepts can be a bit counterintuitive at first, 
but even if we know a factor is a "general cause" (can and does produce the outcome in 
some cases) and even if we also know the amount by which it increases risk e.g., the 
relative risk), from that information alone we still cannot tell what the chance is that a 
given (specific-case) effect was caused by the factor (Sander Greenland, UCLA, Personal 
Communication to Roy Irwin, 2008).  

Nevertheless, it was good that the WSA (op.cit.) looked at relative risk and also 
separately tried to use neutral citteria at multiple steps to help select important metrics. 
Although the WSA conclusion did not perform a true cause and effect type analysis of 
the kind detailed in the EPA Stressor Identification Guidance, its relative risk conclusions 
were based on nationwide data and are still of interest. 

The 2007 version of the WSA did not explain the statistics behind the 
conclusions, but Appendix A of the 2006 version of the Wadeable Streams Assessment, 
explained at least a few aspects. For example, three pre-ANOVA screening criteria (low 
range, a noise to noise ratio they called signal to noise, and an ANOVA-specific F-test 
for means) were used to help reduce the number of invertebrate metrics. No ANOVA was 
then performed. Instead, the data with the remaining invertebrate metrics was analyzed 
with observed to expected ratio models, and then “relative risk” calculations were 
performed on selected (but not all potential) stressors. Although not explained in either 
the 2006 or 2007 versions of the WSA, in separate communications, the WSA authors 
have clarified that what was done for relative risk was consistent with the explanation in 
a later paper (Van Sickle, J., J. L. Stoddard, S.G. Paulsen, and A.R. Olsen. 2006. Using 
relative risk to compare the effects of aquatic stressors at a regional scale. Environmental 
Management 38, 1020-1030). 

In considering such things, be sure to remember that unmeasured (or not 
considered) confounding or driving factors are also potential causes of less than optimal 
analyses. An important concept is that no amount of statistical sophistication can make up 
for missing the most important variables! As one potential example, in the case of the 
WSA, evidently low oxygen was not one of the stressors considered. 

NPS protocol narratives should clearly and completely state why measures were 
chosen, including the neutral criteria used in the selection criteria. This should be more 
convincing than recounting that the turtle expert said to measure turtles or that a 
phtyoplankdon expert said it was a good idea to measure phytoplankton. 

Designing a sampling event so that it provides optimal (direct or indirect) insight 
into the effects of potential drivers of change is an art. The best designs will estimate the 

http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1508676&blobtype=pdf
http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1508676&blobtype=pdf
http://www.stanford.edu/class/ed260/freedman521.pdf
http://www.epa.gov/waterscience/biocriteria/stressors/stressorid.html
http://www.epa.gov/owow/streamsurvey/


 13

most useful parameters with the greatest validity and precision, and balance trade-offs 
wisely (J. Koopman. 1999. The art of study design).  

Are parameters to be measured those also considered to be important indicators 
by other federal agencies or by the State?  Are the parameters to be measured also 
deemed important by interagency groups giving lessons-learned or driver advice on the 
best things to measure in different habitats?  

For example, for those networks monitoring lakes: 
 

The Clean Lakes Program regulations (40 CFR part 35, subpart H) list the 
primary components that could be monitored to characterize the biological 
component of a lake system, including algal pigments, algal genera, cell 
densities, algal cell volumes, limiting nutrients, macrophyte coverage (by 
species), bacteriological components, and fish flesh analysis. The 
regulations do not specifically require monitoring for fish or 
macroinvertebrates (though mussels could be important in some areas), 
and also notably absent from the list are zooplankton (EPA 2006, Lake 
and Reservoir Bioassessment and Biocriteria Technical Guidance 
Document, Chapter 2: Lake Biological Monitoring in USEPA, Local, 
State, Tribal, and Regional Protection and Management Programs). 

 
Wisconsin developed standard protocols for monitoring lakes to compare 
with State biocriteria in water quality standards. They did not use fish 
indicators either (Executive Summaries of State Pilot Studies). 
Nevertheless, some long term monitoring programs in WI do publish fish 
monitoring protocols, (really mostly some SOPs, rather than a more 
complete NPS-style protocol, see WI North Temperate Lakes LTER Fish 
Sampling Protocol). 

 
Fish populations are prominently included by at least some groups 
monitoring lakes. For example, EMAP discussions include fish 
assemblage work in lakes (EPA. 1997. Environmental Monitoring and 
Assessment Program Surface Waters Field Operations Manual for Lakes, 
section--1.3.2 Fish Assemblage discussion). 
 

If measures are picked that are not used by other state or federal monitoring 
agencies, is there reason to believe that proposed measures will be become more standard 
in the future? One example might be remote sensing of lakes, estuaries, and even big 
rivers, for algal blooms, chlorophyll a, color changes, or various other estimates. Those 
on NPS intranet can see the NPS December, 2005 aquatic remote sensing summary).  

Remote sensing will become more common in aquatic monitoring, and the NPS 
may like to consider partnering with other state or federal groups already doing remote 
sensing (for example, see Minnesota Statewide LakeBrowser) and poster summarizing 
Remote sensing for VS monitoring for both terrestrial vegetation and SAV at Fire Island). 
There are also a large number of remote sensing options for measuring temperature from 
airplanes, but some can also be hand held and used wading or in boats (Thermal Imager 
Vendors).  

http://www.sph.umich.edu/epid/epid655/TradeOffNotes.htm
http://www.epa.gov/owow/monitoring/tech/chap02.html
http://www.epa.gov/owow/monitoring/tech/chap02.html
http://www.epa.gov/owow/monitoring/tech/appdixf.html
http://lter.limnology.wisc.edu/fish_protocol07.shtml#top
http://lter.limnology.wisc.edu/fish_protocol07.shtml#top
http://www.epa.gov/emap/html/pubs/docs/groupdocs/surfwatr/field/lake_ove.pdf
http://www.epa.gov/emap/html/pubs/docs/groupdocs/surfwatr/field/lake_ove.pdf
http://www.tucson.ars.ag.gov/ICRW/Proceedings/Shafique.pdf
http://www.tucson.ars.ag.gov/ICRW/Proceedings/Shafique.pdf
http://www1.nrintra.nps.gov/enews/sensingdata.htm
http://water.umn.edu/cgi-bin/mapserv-3?map=/data/web/water.umn.edu/map/mnlakes2000.map&layer=lakes&year=2000&mode=browse&imgbox=-1+-1+-1+-1&imgxy=174.5+199.5&imgext=191031.614116+4816443.707056+749662.098555+5470451.562617
http://science.nature.nps.gov/im/monitor/meetings/NARSEC_2007/presentations/Wang_FINSPoster.pdf
http://science.nature.nps.gov/im/monitor/meetings/NARSEC_2007/presentations/Wang_FINSPoster.pdf
http://www.temperatures.com/tivendors.html
http://www.temperatures.com/tivendors.html
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Always Measure Required Parameters 
 
As explained in more detail in the NPS freshwater and marine core water quality 

white papers, several core parameters are required any time aquatic sampling is done: 
 
For freshwater, required parameters include specific conductance (differs from 
conductivity by being temperature corrected), dissolved oxygen, pH, and water 
temperature. In addition, photographic documentation of the collection site (a 
minimum record of one digital site photo) is recommended. These are such basic 
vital signs that they are required even sample size is too low to establish trends. 
Some of these are almost required as normalization, correlation, or explanatory 
variables. For example, low dissolved oxygen is often associated with fish kills, 
and pH is required to interpret ammonia toxicity. High pH measurements may 
relate to low carbonic acid levels and high pH is often correlated with high 
chlorophyll and/or high nutrient levels and/or various photosynthesis issues. 
Algae tend to remove carbonic acid from the water as they photosynthesize, and 
the rate of removal can thus depend on the time of day as well as algae blooms 

 
Although only qualitative flow is “required” for freshwater Vital Signs 

monitoring of streams and rivers, because flow is being discussed here, we will also 
discuss quantitative flow measurements in this same section. Since the concentration of 
so many water column parameters is so strongly influenced by flow, the WRD strongly 
encourages vital signs networks to measure flow quantitatively at the site being 
monitored. Flow is also a key to figuring out total load coming down streams, and is also 
sometimes needed to classify sites when analyzing site results using multimetric or 
observed to expected (O/E) models. It is best to measure flow using the most quantitative 
method that funding and logistics will allow. When practical, consider quantitative and 
relatively rigorous flow-meter methods used by agencies such as USGS (USGS. 2007. 
Measurement of Stream Discharge by Wading) and EPA EMAP (EPA 1998. EMAP 
Wadeable Streams Manual, see section 6 on Stream Discharge). Whose flow data will be 
used for comparison? Choose SOPS that will produce comparable data.  

Some additional NPS references on flow measurement and related issues such as 
trend analysis of flow data can by viewed on NPS computers having access to the NPS 
intranet. This is included on the NPS Share-point information sharing site Water Quality 
Monitoring Group Site, a site that also contains a variety of useful tools and a wealth of 
information on other stream monitoring topics. Other detailed guidance flow/discharge 
SOP and guidance documents, including Techniques of Water Resources Investigations 
Documents and USDA summaries are found in Part C of this guidance 

For one example approach to developing QA/QC SOPs for flow, USGS Georgia 
has a 2005 QAPP for flow (Open-File Report 2005-1246), a document based on a 1995 
generic template to be used to develop USGS State QAPPs. As expected, the Georgia 
QAPP is more complete than the earlier USGS generic template. The Georgia QAPP 
covers a bit on bias (“In order to minimize systematic errors, field trips are rotated to 
different personnel every 3 years.”). NPS monitoring networks could create a 
measurement quality objecitive for this type of bias (say, for example, a maximum 
percent difference of 10% or 20%) and the frequency could be more often. OFR Report 

http://www.nature.nps.gov/water/Vital_Signs_Guidance/Guidance_Documents/COREparamFINwSIGpg.pdf
http://www.nature.nps.gov/water/Vital_Signs_Guidance/Guidance_Documents/COREparamMarine.pdf
http://www.nature.nps.gov/water/wobstaff.cfm
http://wwwrcamnl.wr.usgs.gov/sws/SWTraining/WRIR004036/Index.html
http://www.epa.gov/emap/html/pubs/docs/groupdocs/surfwatr/field/ws_chap.html
http://www.epa.gov/emap/html/pubs/docs/groupdocs/surfwatr/field/ws_chap.html
http://inp2300fcsirma/water_quality_monitoring/Lists/Flow%20Measurement/AllItems.aspx
http://nrpcsharepoint/water_quality_monitoring/default.aspx
http://nrpcsharepoint/water_quality_monitoring/default.aspx
http://pubs.usgs.gov/twri
http://pubs.usgs.gov/twri
http://www.nature.nps.gov/water/Vital_Signs_Guidance/Guidance_Documents/wqPartC.pdf
http://pubs.usgs.gov/of/2005/1246/pdf/ofr2005-1246.pdf
http://pubs.usgs.gov/of/2005/1246/pdf/ofr2005-1246.pdf
http://pubs.usgs.gov/of/2005/1246/pdf/ofr2005-1246.pdf


 15

2005-1246 (op.cit) also contains some guidance on accuracy (sic, some of which seems 
to relate more to bias than accuracy), This same QAPP also contains good content on QA 
in general as well as practical recommendations for field methods. Further, it also covers 
some practical sense guidance related to the number of verticals used: “Measurement of 
discharge is essentially a sampling process, and the accuracy (sic, partly they mean 
representativeness and partly precision) of sampling results typically decreases markedly 
when the number of verticals is less than 25.” Although neither precision nor sensitivity 
are mentioned in the Georgia USGS QAPP, monitoring networks can easily develop 
common sense QC controls for precision (occasional repeat measures) and sensitivity 
(AMS could be calculated once in a while, even if only once every few years).   

If flow is a main vital sign rather than a secondary measure (just done while 
getting primary measures), monitoring design sensitivity could also be estimated with 
minimum detectable differences (MDDs) after some years of quantitative flow data is 
collected. If no trends will be estimated for flow, this last step (estimating MDDs) is 
uncessary. If flow is not the primary vital sign, but instead a potentially explanatory co-
variate, QC ‘completeness’ need not be controlled either. 

For some stream applications (not for extremely low flows such as seeps), some 
in the NPS and USGS now use “The Flow Tracker ADV” made by SonTek (No 
Government Endorsement Implied). SonTek is a subsidiary of YSI (the ADV stands for 
Acoustic Doppler Velocimeter). There is a free self-training video that goes with the 
FlowTracker and am available application note discussing automated QC.  See USGS 
2004. Policy on the use of the FlowTracker and more recent USGS OSW Hydroacoustics 
summary for details and cautions. However, the latest electronic instruments are not the 
only option. There is still a place for the older mechanical measuring systems due to the 
fact they are less expensive to replace and are very reliable (if well maintained). 

For seeps, an interesting recent summary is E. A. Adams, 2005. Determining 
Ephemeral Spring Flow Timing with. Laboratory and Field Techniques: Applications To. 
Grand Canyon, Arizona. MS Thesis, Northern Arizona University, available on the 
internet at http://www4.nau.edu/geology/theses/adams2005.pdf. This study used 
electrical resistance (ER) sensors to monitor spring-flow timing of South Rim springs. 
The sensor detects an increase in electrical resistance associated with drying events. 
 If quantitative meter-methods or stream gauge methods cannot be done to 
measure flow, the float method used by various State Agencies (for example see Arizona, 
2005, ADEQ Biocriteria Program Quality Assurance Program Plan is adequate (and 
typically far better than having no quantitative flow results). The float method has also 
been recommended by some Federal Agencies (for example, see C. C. Harrelson, C. L. 
Rawlins and John P. Potyondy. 1994. Stream Channel. Reference Sites U.S. Forest 
Service Technical Report RM-245). The float method produces quantitative results which 
can be particularly effective when the data is accompanied by QC documentation for 
precision and operator-bias (to bound the magnitude of reproducibility differences 
between at least two observers). The float method is also used by many volunteer groups, 
and is said to be “actually superior in streams too shallow for meters (< 0.2 feet), or those 
with a flow rate below the level of detection of the meter” [EPA. 2003. The Volunteer 
Monitor 15 (2)]. 

When quantitative flow can’t be done at all, networks are encouraged to get flow 
data from nearby sites to indirectly gain insight. However, what is REQUIRED by WRD 

http://www.sontek.com/
http://water.usgs.gov/admin/memo/SW/OSW-2004.04.pdf
http://hydroacoustics.usgs.gov/
http://hydroacoustics.usgs.gov/
http://www4.nau.edu/geology/theses/adams2005.pdf
http://www.azdeq.gov/environ/water/assessment/download/biob.pdf
http://www.stream.fs.fed.us/publications/PDFs/RM245E.PDF
http://www.epa.gov/owow/monitoring/volunteer/newsletter/volmon15no2.pdf
http://www.epa.gov/owow/monitoring/volunteer/newsletter/volmon15no2.pdf
http://www.nature.nps.gov/water/wobstaff.cfm
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in all cases is at minimum is at least a STORET-terminology-consistent qualitative 
assessment of flow “severity.  The following is from D. Tucker. 2007. Vital Signs Water 
Quality Data Management and Archiving): 

 

Choices Description 

DRY  No visible water in stream (typical of dry period for an 
ephemeral/intermittent stream). 

NO 
FLOW 

Discrete pools of water with no apparent connecting flow (at 
surface). 

LOW Base flow for a stream or flow within roughly 10% to 20% of base 
flow condition. 

NORMAL 

When stream flow is considered normal (greatest time that stream is 
characterized by this in terms of flow quantity, level, or general 
range of flow during a falling or rising hydroperiod, but above base 
flow). 

ABOVE 
NORMAL  

Bank full flow or approaching bank full (generally within upper 20% 
of bank full flow condition). 

FLOOD Flow extends outside normal bank full condition or spreads across 
floodplain. 

 

Although not strictly required, it is also a good idea to include notes with water 
quality (and especially contaminants) datasets about when conditions reflected first flush 
(rising limb after a dry period) flows, since such conditions can influence concentrations 
of many pollutants. 

Except for “low flow”, similar terminology could also be used for lakes, ponds, 
reservoirs, or wetland water levels, though the terminology is not now standardized in 
STORET. If enough networks agree on terminology, we could suggest new terminology 
for STORET. For example, the network might choose a rating such as the following 
expressed a % of bank full: 

 
• Low - (<25% of bank full or perhaps lower quartile of conditions) 
• Intermediate (or normal?) – [25% to 75% of bank full, or interquartile range 

(25/75%) of frequency of conditions?] 
• High (or above normal?) - (greater than 75% bank full or in upper quarter of high 

conditions?) 
• Flood Stage (overbank) - (greater than 100% bank full) 

 
If a more complex lake, pond, or wetland rating system is used, something 

relatively simple (like the above) might still be used in addition to the more complex 
terminology. Remote sensing water level categories might be unique.  

http://www.nature.nps.gov/water/infoanddata/index.cfm
http://www.nature.nps.gov/water/infoanddata/index.cfm
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As another example, the EPA lakes habitat protocol and SOP guidance mentions 
lake levels several times and specifies the following SOP (EPA. 1997. Environmental 
Monitoring And Assessment Program Surface Waters Field Operations Manual For 
Lakes, EPA/620/R-97/001):  
 

1) Estimate the vertical and horizontal distances between the present lake level 
and the high water line. 
 
2) The riparian habitat characterization includes riparian vegetation cover, 
shoreline substrate, bank type and evidence of lake level changes, 
 
3) (Section 5.2.2.1.3): Bank type and evidence of lake level changes--Choose the 
bank angle description that best reflects the current shoreline that is dominant 
within your field of vision and 1 m into the riparian plot: V = Near 
vertical/undercut (>75 degrees, S = Steep; >30 to 75 degrees, hard to walk up 
bank; or G = Gradual, 0 to 30 degrees, easy to walk up). Estimate the vertical 
difference between the present level and the high water line; similarly, estimate 
the horizontal distance up the bank between current lake level and evidence of 
higher level. 
 
If the waterbody is dry, other water column parameters like pH and conductivity 

cannot be taken, but recording the fact that the habitat is dry may be important to tracking 
changes in frequencies of flow or water level conditions. Changing stream flows, and the 
specific question “How many streams have had major changes in the size or timing of 
their lowest or highest flows since the 1930s and 1940s?” was singled out as an 
especially important national freshwater ecological indicator in the Heinz Report (The 
Heinz Center. 2005. State of the Nation's Ecosystems). Phenology aspects can also be 
important. 

If the Cowardin et al (1979) wetland classifications for hydrologic regime 
(saturated, temporarily flooded, seasonally flooded, semi-permanently flooded, 
permanently flooded, etc.) are used to describe the type of wetland, that should be done in 
addition to rather instead of the instantaneous water level qualitative terms such as those 
above. In other words, it is still useful to know how full the wetland was when making 
water quality of aquatic biology measurements in a wetland. 

For marine or estuarine monitoring, required parameters include ionic strength 
expressed as conductivity and as salinity, pH, dissolved oxygen, and water temperature. 
In addition, the following are required: 

 
• Location standard coordinates [GPS on collection sites and also consult the 

Universal Transverse Mercator (UTM) grid; on USGS quad]; 
• Local time (indicating standard or daylight-saving time); 
• Water depth and sample depth; 
• Tidal stage (e.g. high, low, or mid-tide) and direction (ebb, flood or slack 

water), 
• Estimated Wave Height. 
• Flushing time 

http://www.epa.gov/emap/html/pubs/docs/groupdocs/surfwatr/field/lake_hab.pdf
http://www.epa.gov/emap/html/pubs/docs/groupdocs/surfwatr/field/lake_hab.pdf
http://www.epa.gov/emap/html/pubs/docs/groupdocs/surfwatr/field/lake_hab.pdf
http://www.heinzctr.org/ecosystems/fr_water/indicators.shtml
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• Tidal range 
• Habitat description 

 
NOAA’s National Estuarine Research Reserve System also specifies continuous 

monitoring for temperature, salinity/conductivity, pH, oxygen, and depth at four sites 
(same as NPS required parameters but NOAA adds turbidity) within each of its marine 
reserves. Three of the sites are in presumably relatively pristine sites and at least one site 
being a relatively impacted site. NOAA specifies continuous monitoring and also 
monitors turbidity at each site (NOAA. 2007. Water Quality Indicators Measured by 
Reserves Webpage). 

Which Nutrient Measures to Monitor: 
 
 The short answer is measure whichever nutrient forms are covered by state water 
quality standards, but usually always include TN and TP. EPA notably recommends that 
states include the following for nutrient assessment: total phosphorus, total nitrogen, 
chlorophyll-a, and some measure of water clarity (e.g., Secchi depth or photometer for 
lakes and reservoirs and turbidity for rivers and streams, see EPA. 2001. Development 
and Adoption of Nutrient Criteria into Water Quality Standards). EPA suggested criteria 
(which would be useful for benchmark comparisons to VS monitoring results) for each of 
these parameters for both rivers/streams and for lakes (EPA 2007. Ecoregional Criteria). 
 NPS employees can access some misc. nutrient tools on the NRPC Sharepoint 
Site. 
  One thing to keep in mind is that the previous “limiting nutrient theory” notions, 
notably that: 

 
P is always limiting in freshwater and N is always limiting in saltwater;  

 
are greatly oversimplified. Different kinds of plant life can out-compete other plant life 
depending not only on ratios of N to P but also on availability of Sulfate, Carbon, Silica, 
Dissolved Organic Nitrogen, and many other factors. Also, water bodies are not perfectly 
well mixed due to stratification and other factors. For a good tutorial on why single-
limiting nutrient notions are now considered outmoded and oversimplified see W. Dodds. 
2007, It’s Not Just Phosphorus That Controls Trophic State in Fresh Waters, an EPA 
sponsored web-cast tutorial archived on a Tetra Tech interagency N-Steps Website (a site 
with many nutrient references and tools, most based on TN, TP, and Nitrate). 

For nutrients like nitrate and other variables that vary predictably during a 24 hour 
cycle in response to changing sun energy, variability can often be brought down (making 
trends easier to detect) by sampling only in narrow index period of time during the day 
(just after dawn for example). 

If there are no state water quality standards (for example in some estuarine 
habitats), and a network could only afford to monitor two nutrient parameters in surface 
waters, total nitrogen (TN) and/or total phosphorus (TP) will often be the best choices. 
Many states have TN and TP water quality standards, and these two are most often the 
most relevant forms for total loading issues (related to TMDLs and national studies such 
as those done by USGS). 

http://www.nerrs.noaa.gov/Monitoring/Water.html
http://www.nerrs.noaa.gov/Monitoring/Water.html
http://www.epa.gov/waterscience/criteria/nutrient/files/nutrientswqsmemo.pdf
http://www.epa.gov/waterscience/criteria/nutrient/files/nutrientswqsmemo.pdf
http://www.epa.gov/waterscience/criteria/nutrient/ecoregions/
http://nrpcsharepoint/wrd/water_quality_monitoring/Lists/Nutrients/AllItems.aspx
http://n-steps.tetratech-ffx.com/webcasts-archived.cfm
http://n-steps.tetratech-ffx.com/NTSChome.cfm
http://pubs.acs.org/cgi-bin/sample.cgi/esthag/asap/pdf/es0716103.pdf
http://pubs.acs.org/cgi-bin/sample.cgi/esthag/asap/pdf/es0716103.pdf
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An exception would be if there is much more existing regional comparable data 
for some other form (for example dissolved nitrate + dissolved nitrite rather than TN), 
then networks might want to seriously consider measuring these other forms in addition 
to (or perhaps even instead of) TN and TP. If one could afford to monitor four nutrients, 
then networks might consider monitoring total dissolved nitrogen (TDN), Particulate 
Nitrogen (PN), Total Dissolved Phosphorus (TDP), and Particulate Phosphorus (PP). 
Why? Because these four together give one more information and one can still get TP by 
adding TDP and PP; and one can still get TN by adding TDN and PN.  

When one can afford to measure only two nutrients in surface water, measuring 
only dissolved inorganic nitrogen (DIN) and Dissolved Inorganic phosphorus (DIP, 
usually the same as Soluble Reactive Phosphorus – SRP) is often not as advisable as 
measuring TN and TP, since doing so gives one less useful information for either 
ecological relevance, total incoming load, or for Redfield Ratio comparisons (Walter 
Dodds, Kansas State University, Personal Communication, 2006).  

However, there are usually exceptions to most rules of thumb and dissolved 
fractions (TDN, TDP, DIN, DIP, DON, and DOP) are more popular in coastal or marine 
monitoring. The Southeast Coast Network of the National Park Service has developed a 
rationale explaining why TDN and TDP are important indicators of their estuarine waters 
(Eva DiDonato, National Park Service, Personal Communication). Likewise, EPA’s 2005 
National Coastal Condition Report II (EMAP) rated coastal conditions as good, fair, or 
poor based on concentrations of DIN and DIP.  

  Some networks (Northeast Coastal and Barrier Network) have decided not to 
measure nutrients directly but instead to monitor eutrophication responses (chlorophyll, 
SAV, water clarity, etc.). This has some appeal since these measures integrate over time 
and that some (like SAV) may have less variability than water column parameters and 
has not been opposed by NPS WRD, but keep in mind that recently some important 
documents [the Wadeable Streams Assessment (WSA) for example] have re-emphasized 
the importance of nutrients as ecological drivers even for things like benthic 
macroinvertebrates. 

 
IV. Include Detailed SOPS for All Field and Lab Methods 

 
A QA basic is that methods should be explained in detail. Exactly what will be 

done in the field and lab? Reproducibility and transparency are not only QA basics but 
also sound science basics. The amount of detail in the SOPs should be sufficient so that 
someone outside the NPS could duplicate the methods exactly.    

As required by Oakley et al. 2003, various NPS WRD guidance documents, and 
modern QA/QC conventions, all protocols should include method-detail SOP(s). For 
convenience, the method SOPs may be broken down into two groups: A field method 
SOP and a lab method SOP.  

Together, the SOPs should fully explain the planned “response design,” the 
process and methods of obtaining a response at a site, once sites have been chosen (EPA 
2006. EMAP webpage Protocols for collecting data at sample sites).  

Consider Existing Protocols and Guidance from Other Monitoring Agencies: 
  

http://www.epa.gov/owow/oceans/nccr/2005/Chapt1_Intro.pdf
http://www.nature.nps.gov/water/wobstaff.cfm
http://www.epa.gov/owow/streamsurvey/
http://science.nature.nps.gov/im/monitor/protocols/ProtocolGuidelines.pdf
http://www.nature.nps.gov/water/
http://www.epa.gov/nheerl/arm/designpages/response_design.htm
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The NPS Water Resources Division has consistently advised monitoring networks 
to consider using existing protocols and SOPs rather than inventing new ones. There is 
not need to re-invent wheels that have already been invented and work well. 

In water quality work, the USGS and EPA and many states have existing 
protocols and SOPs. So a key question for reviewers of draft protocols is “Does the 
protocol narrative provide evidence that the monitoring network fully considered using 
existing protocols or SOPs used by state(s) or large regional monitoring programs? Some 
existing protocols and especially SOPs can often be adopted and be used as is. Using 
existing protocols and SOPs to the extent possible is a good idea not only because it saves 
time but also because it helps with regional data comparability. 

Will USGS National Water-Quality Assessment Program (NAWQA) or state or 
EMAP protocols and SOPs be used?  What detailed field and lab protocols will be used 
to get a response at the site?  

Will parts or all of other federal and state guidance for monitoring and biocriteria 
in various types of habitats be incorporated into Protocol Narratives or SOPs? Prominent 
resources that have come to our attention so far include: 
 
Wadeable Streams: 
 

EPA 1990. Biological Criteria: National Program Guidance for Surface Waters 
(EPA-440/5-90-004).  
 
EPA 2000. Nutrient Criteria Technical Guidance Manual: Rivers and Streams 
 
EPA 1996. Biological Criteria: Technical Guidance for Streams and Small Rivers, 
Revised Edition - EPA/822/B-96/001  
 
EPA. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable 
Rivers: Periphyton, Benthic Macroinvertebrates, and Fish Second Edition, EPA 
841-B-99-002 
 
Design and Analysis specifics and examples for wadeable streams, defining target 
populations and rotating basin designs and examples (EPA. 2007. Design and 
Analysis specifics and examples for Streams, EMAP). 

 
The Maryland Biological Stream Survey (MBSS) includes at least some QA/QC 
aspects not only for chemical parameters, but also for many biological and habitat 
measures. Bias/accuracy accuracy goals are partly controlled by assessing the % 
of identifications of fish and herps that are correct (90% correct in the 2000 
survey) and precision is controlled with a measurement quality objective of less 
than or equal to a RPD of 20% for invertebrate metrics like number of taxa or % 
tolerant (Maryland, 2000. Maryland Biological Stream Survey Quality Assurance 
Report, Chesapeake Bay and Watershed Programs Monitoring and Non-Tidal 
assessment. CBWP-MANTA- EA-01-10, and a similar QA report for 2001 which 
included aggregated IBI score duplicate RPDs). Maryland biomonitoring 
protocols are available for various types of organisms and habitats. Although the 

http://www.epa.gov/bioindicators/html/biolcont.html
http://www.epa.gov/bioindicators/html/biolcont.html
http://www.epa.gov/waterscience/criteria/nutrient/guidance/rivers/frontcover.pdf
http://www.epa.gov/bioindicators/html/bioltech.html
http://www.epa.gov/bioindicators/html/bioltech.html
http://www.epa.gov/owowwtr1/monitoring/rbp/index.html
http://www.epa.gov/owowwtr1/monitoring/rbp/index.html
http://www.epa.gov/owowwtr1/monitoring/rbp/index.html
http://www.epa.gov/nheerl/arm/designpages/streams/monitoring_streams.htm
http://www.epa.gov/nheerl/arm/designpages/streams/monitoring_streams.htm
http://www.dnr.state.md.us/streams/pubs/ea01-10_qaqc.pdf
http://www.dnr.state.md.us/streams/pubs/ea01-10_qaqc.pdf
http://www.dnr.state.md.us/streams/pubs/ea03-1qaqc.pdf
http://www.epa.gov/bioindicators/html/state/md-bio.html
http://www.epa.gov/bioindicators/html/state/md-bio.html
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Ohio protocols were early models in many ways, the current  Ohio Volume III: 
Standardized Biological Field Sampling and Laboratory Methods for Assessing 
Fish and Macroinvertebrate Communities (available as a non-searchable PDF file) 
still is a bit short on QC control (instead of measuring QC bias, the Ohio fish 
Protocol simply expects 100% of the identifications to be correct). 
 
An example of a detailed protocol for a response design for wadeable streams is 

the EMAP Wadeable Streams Manual, which includes many SOPs [Lazorchak, J.M., 
Klemm, D.J., and D.V. Peck (editors). 1998. Environmental Monitoring and Assessment 
Program -Surface Waters: Field Operations and Methods for Measuring the Ecological 
Condition of Wadeable Streams. EPA/620/R-94/004F. U.S. Environmental Protection 
Agency, Washington, D.C.]. 

A diagram of typical EMAP placement of sites along a river (showing the 
alternation of left, middle and right collecting spots) is in the EPA 2006. Wadeable 
Stream Response Design homepage. Several NPS Vital Signs Monitoring Networks 
either have water or aquatic protocols and SOPs in the works based (at least partly) on the 
Western Pilot model or are considering using it as a model (including the Northern 
Colorado Plateau, Rocky Mountain, Northern Great Plains and Greater Yellowstone 
Networks). 
 
Non-wadeable Streams (Includes Big Rivers and Great Rivers): 
 
 References with ideas for SOPs and protocols include: 
 

EPA 2000. Nutrient Criteria Technical Guidance Manual: Rivers and Streams 
 

For ideas and examples of using probabilistic surveys, see EMAP discussion on 
the EPA 2007 Initial Monitoring & Design Approaches for Great Rivers 
homepage. 
 
For archived Great Rivers summary documents and newsletters, see EPA 2007 
EMAP Great River Study Homepage. 
 
Another broader resource is EPA. 2006. Environmental Monitoring and 
Assessment Program Great River Ecosystems Field Operations Manual, 
EPA/620/R-06/002. 
 
Flotemersch, J. E., J. B. Stribling, and M. J. Paul. 2006. Concepts and Approaches 
for the Bioassessment of Non-wadeable Streams and Rivers. EPA 600-R-06-127. 
US Environmental Protection Agency, Cincinnati, Ohio, 
http://www.epa.gov/EERD/rivers/non-wadeable_full_doc.pdf). This document 
explains many data comparability subjects for riverine monitoring covers large 
rivers, but the methods for comparability versus Measurement Quality Objectives 
(MQOs, including sensitivity, precision, bias, and precision) seem broadly 
applicable to smaller (wadeable) rivers as well. 

 

http://www.epa.state.oh.us/dsw/bioassess/BioCriteriaProtAqLife.html
http://www.epa.state.oh.us/dsw/bioassess/BioCriteriaProtAqLife.html
http://www.epa.gov/emap/html/pubs/docs/groupdocs/surfwatr/field/ws_chap.html
http://www.epa.gov/emap/html/pubs/docs/groupdocs/surfwatr/field/ws_chap.html
http://www.epa.gov/emap/html/pubs/docs/groupdocs/surfwatr/field/ws_chap.html
http://www.epa.gov/nheerl/arm/designpages/streams/emapstrmresp.htm
http://www.epa.gov/nheerl/arm/designpages/streams/emapstrmresp.htm
http://www.epa.gov/waterscience/criteria/nutrient/guidance/rivers/frontcover.pdf
http://www.epa.gov/nheerl/arm/greatrivers.htm
http://www.epa.gov/emap/greatriver/index.html
http://www.epa.gov/emap/greatriver/EMAPGREFOM.pdf
http://www.epa.gov/EERD/rivers/non-wadeable_full_doc.pdf


 22

Some agencies (EMAP and NAWQA) have utilized response designs that call for 
only a single site visit each year, usually sampled during a narrow index time period. This 
is typical for monitoring designs conducted over large regional areas. However, one can 
choose sites with a probabilistic design and then decide to sample the same sites (or with 
in the same general area or reach) more frequently. Details in a response design are 
driven by the objectives and questions to be answered by monitoring.  
Other misc. references relevant to developing large river protocols include the following 
(Sam Brenkman, Olympic National Park, NPS, Personal Communication, 2007): 

 
Dunham, J., G. Chandler, B. Rieman, and D. Martin.  2005.  Measuring stream 
temperature with digital data loggers:  a user’s guide.  Gen. Tech. Rep. RMRS-GTR-
150WWW.  Fort Collins, CO:  U.S. Department of Agriculture, Forest Service, 
Rocky Mountain Research Station. 15 pp. 

 
Flotemersch, J. E., J. B. Stribling, and M. J. Paul. 2006. Concepts and Approaches for 
the Bioassessment of Non-wadeable Streams and Rivers. EPA 600-R-06-127. US 
Environmental Protection Agency, Cincinnati, Ohio. 
 
Johnson, D.H., B.M. Shrier, J.S. O'Neal, J.A, Knutzen, X. Augerot, T.A. O'Neil, and 
T.N. Pearsons.  2007.  Salmonid field protocols handbook:  techniques for assessing 
the status and trends in salmon and trout populations.  American Fisheries Society, 
Bethesda, Maryland. 
 
Peck, D.V., J.M. Lazorchak, and D.VJ Klemm (editors).  2000.  Unpublished draft.  
Environmental Monitoring and Assessment Program-Surface Waters:  Western Pilot 
Study Field Operations Manual for Wadeable Streams. U.S. Environmental 
Protection Agency, Washington D.C. 
 
Schmutz, S., M. Kaufmann, B. Vogel, M. Jungwirth, and S. Muhar.  2000.  A multi-
level concept for fish-based, river-type-specific assessment of ecological integrity.  
Hydrobiologia 422/423:279-289.   

  
Estuaries/Marine and Near Coastal Areas: 

EPA 1990. Biological Criteria: National Program Guidance for Surface Waters. 
EPA-440/5-90-004  

EPA. 2000. Estuaries and Coastal Marine Waters Bioassessment and Biocriteria 
Technical Guidance, EPA-822-B-00-024) 

EPA. 2007 Webpage: Design and Analysis specifics and examples for estuaries). 

NPS 2007. Marine & Estuary Water Quality Discussion Board: those with access 
to the NPS intranet interested in marine and estuarine monitoring should consider 
joining this group developed and maintained by Eva DiDonato of the Southeast 

http://www.epa.gov/bioindicators/html/biolcont.html
http://www.epa.gov/bioindicators/html/biolcont.html
http://www.epa.gov/waterscience/biocriteria/States/estuaries/estuaries1.html
http://www.epa.gov/waterscience/biocriteria/States/estuaries/estuaries1.html
http://www.epa.gov/nheerl/arm/designpages/estuaries/monitoring_estuaries.htm
http://inpserosecn/marinewq/default.aspx
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Coast Network: To join, go to the intranet site and then fill in your contact 
information and start reviewing the site and posting new information. 

EPA 2001. Nutrient Criteria Technical Guidance Manual: Estuarine and Coastal 
Marine Waters. 

Wetlands: 

Protocol, Methods, and SOP reference documents: 

Except for lab chemical measures, most of these are notably short on QA/QC aspects: 

1. Biological Assessment of Wetlands Workgroup - Home Page 
2. Wetland Bioassessment Fact Sheets (1998) - EPA 843-F-98-001 
3. For ideas and examples of using probabilistic surveys, see EMAP discussion 

Initial Monitoring & Design Approaches for Wetlands. This document points 
out that defining the target population and availability of sampling frames, can 
both be somewhat problematic.  

4. EPA. 2006. Criteria Development Guidance Wetlands. Chapter 6 of the 
Nutrient Criteria Technical Guidance Manual covers some QA/QC basics, but 
mostly for lab analyses rather than field measures. 

5. EPA 2002. Methods for Evaluating Wetlands Condition 
6. EPA 2002. Methods for Evaluating Wetlands Condition #12 Using 

Amphibians in Bioassessments of Wetlands. This document notably 
recommends randomly selecting new surveying locations for each monitoring 
activity every year to avoid trapping biases and to take into consideration 
yearly changes in hydrology and plant communities. Precision is discussed 
mainly in terms of the magnitude of confidence intervals rather than in a QC 
sense. Bias is discussed mostly in terms of bias of collecting methods or gear 
rather than in a QC sense.  

Lakes and Reservoirs: 

Protocol, Methods, and SOP reference documents 

• Biological Criteria: National Program Guidance for Surface Waters (1990) 
- EPA-440/5-90-004  

• Lake and Reservoir Bioassessment and Biocriteria: Technical Guidance 
Document (1998) - EPA 841-B-98-007 

• EMAP discussion of Design and Analysis specifics and examples for 
Lakes 

• EMAP SURFACE WATERS FIELD OPERATIONS MANUAL FOR 
LAKES that includes many SOPs. 

• EPA 2006. Nutrient Criteria Technical Guidance Manual Lakes and 
Reservoirs. 

http://www.epa.gov/waterscience/criteria/nutrient/guidance/marine/index.html
http://www.epa.gov/waterscience/criteria/nutrient/guidance/marine/index.html
http://www.epa.gov/owow/wetlands/bawwg/
http://www.epa.gov/owow/wetlands/wqual/bio_fact/index.html
http://www.epa.gov/nheerl/arm/wetlands.htm
http://www.epa.gov/waterscience/criteria/nutrient/guidance/wetlands/index.html
http://www.epa.gov/waterscience/criteria/nutrient/guidance/wetlands/chapter6.pdf
http://www.epa.gov/waterscience/criteria/nutrient/guidance/wetlands/chapter6.pdf
http://www.epa.gov/waterscience/criteria/wetlands/
http://www.epa.gov/waterscience/criteria/wetlands/12Amphibians.pdf
http://www.epa.gov/waterscience/criteria/wetlands/12Amphibians.pdf
http://www.epa.gov/bioindicators/html/biolcont.html
http://www.epa.gov/bioindicators/html/biolcont.html
http://www.epa.gov/owow/monitoring/tech/lakes.html
http://www.epa.gov/owow/monitoring/tech/lakes.html
http://www.epa.gov/nheerl/arm/designpages/lakes/monitoring_lakes.htm
http://www.epa.gov/nheerl/arm/designpages/lakes/monitoring_lakes.htm
http://www.epa.gov/emap/html/pubs/docs/groupdocs/surfwatr/field/lake_ove.pdf
http://www.epa.gov/emap/html/pubs/docs/groupdocs/surfwatr/field/lake_ove.pdf
http://www.epa.gov/waterscience/criteria/nutrient/guidance/lakes/index.html
http://www.epa.gov/waterscience/criteria/nutrient/guidance/lakes/index.html


 24

For lake or pond monitoring of amphibians, fish, and invertebrates, there are various 
helpful Website Resources outside of EPA: 

For lakes WI publishes SOPs (See North Temperate Lakes Long Term Ecological 
Research website. For example for fish methods, first click on the "data" tab, then 
scroll down to "data protocols", then to "fish field sampling" to find the SOPs. 

As another example, many states have standardized protocols and SOPs available, 
particularly for fish and benthic macroinvertebrates (BMIs). These State protocols 
are typically designed to assess compliance with biological criteria. State 
bioassessment and aquatic biocriteria contacts may be found by clicking on the 
applicable state on the map at the EPA Bioassessment Programs website. Among 
the states that already have detailed protocols and advanced narrative biocriteria 
are Idaho, Oregon, Arizona, Maryland, and Vermont. Most other states have some 
standardized protocols/methods and are at various stages of working on more 
advanced biocriteria to include in water quality standards. 

One can search for existing protocols for amphibians and other groups of 
organisms using The National Biological Information Infrastructure (NBII) 
Natural Resources Monitoring Partnership Monitoring Protocols Library and 
Monitoring Locator System.  

Consult NEMI on Lab Methods 
 
In picking methods, a good first step is to scan methods and SOPs in the National 

Environmental Methods Index (NEMI) to get a relatively quick idea about which ones 
can achieve true method detection limit (MDLs) lower than all water quality standards or 
other comparison benchmarks or thresholds of concern. When possible, use methods that 
have acceptable MDL detection limits rather than RNGE—(range-defined) detection 
limits. 

When possible, choose methods and labs where the semi-quantitative (MDL) 
detection limit that can be achieved is lower than the lowest water quality standard or 
other benchmark. Better when possible; choose methods and labs allowing the MDLs to 
be 1.6 to 2 times lower than comparison benchmarks. Best when possible, the MDL 
should be more than 3.18 times lower than the water quality standard or other comparison 
benchmark. The quantitative limit (ML. minimum level of quantitation) detection limit is 
3.18 times the MDL, so this is the ideal scenario where both the MDL and ML would be 
below all data comparison benchmarks, standards, or thresholds.  

Getting the absolutely lowest detection limits (better and best examples above) is 
more important in some situations than in others. If monitoring networks anticipate that 
many of the their measurements will involve very low level signals (low concentrations 
near the MDL detection limits), it is worth going to some trouble to find methods and 
labs that can achieve MDLs that are below the anticipated levels and comparison 
benchmarks. This is especially true for chemicals that can be a concern when present 
even in very low amounts and for nutrients in very pristine sites where nutrients are very 
low. However, for some analytes, methods or labs that can achieve detection limits that 

http://limnosun.limnology.wisc.edu/
http://limnosun.limnology.wisc.edu/
http://www.epa.gov/bioindicators/html/stateprgs.html
http://nrmp.nbii.gov/portal/server.pt
http://www.nemi.gov/
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low cannot be found. In other cases, all measurements are likely to be well up in the 
quantitative range. For example in farming or urban areas, nitrate levels in surface water 
quality are never likely to fall to levels near low-level detection limits. In this case, the 
lowest possible low-level detection limits may not be needed and the network could 
consider using methods and labs with higher detection limits if doing so reduced costs. 

While one is quickly screening methods in NEMI to see if the method can achieve 
acceptable detection limits, it would be time-efficient to also check to see if the listed 
method QC performance for precision (usually as an relative percent difference --RPD) 
and bias (% difference or % recovery are sometimes listed for bias) are acceptable for 
project purposes. If acceptable detection limits, precision performance, and bias 
performance capabilities are not listed in NEMI or in the method itself, it is reasonable to 
consider other methods already having acceptable performance documented. 

Put the Details in SOPs and their Appendices 
  
Lab SOPs should detail exactly how everything is done in the lab. If a standard 

method from a state, USGS, or EPA is used, it should be written out or attached in its 
entirety and electronic copies should archived the database so that users can find out 
exactly what was done years from now. If no electronic versions exist, hardcopies should 
be archived and “point-to” notes in the database should give the location of storage. 
Method and SOP documentation should include measurement quality objectives (MQOs) 
for measurement sensitivity, Precision, Systematic Error/bias (bias is still wrongly called 
accuracy in some methods), and blank control bias. Many of the EPA methods are in 
NEMI and can be copied electronically. 

If the agency (EPA, USGS, etc.) changes the method, will the NPS also change in 
the same way? Regardless of how this is decided, the detailed methods that the network 
plans to start with need to be detailed in the SOPs and archived for future comparisons. 
The SOPs should be detailed enough to allow third parties to reproduce the methods and 
to allow determinations of data comparability. 

Attach a QA/QC SOP to Each Aquatic Protocol: This topic will be mentioned 
again in much more detail below, in the subsections entitled: “Why Document Quality 
Control?” and “Include a QA/QC Comparison Table for QC Topics”. However, since QC 
methods are so often considered a part of methods, and since methods are being 
discussed here, the concept of attaching a QA/QC SOP to each protocol is first 
introduced here. 

The QA/QC SOP should detail what will be done with data from samples that 
exceeded holding time requirements. Will such data be rejected or flagged? Data 
rejection and re-sampling so that newer replacement samples meet the holding times is 
usually the better option but flagging may be better than simply using the data as though 
it was high quality data. If flagging is chosen, it should be justified and flagging should 
be STORET-compatible as follows: 

 
In cases where the sample exceeded the recommended holding time, and a 
decision was made to keep the data, the network can enter the data in STORET 
with a STORET remark code of "EHT”, designating the condition that the 
"Sample or extract held beyond acceptable holding time."  The data can also be 

http://www.nemi.gov/
http://www.nemi.gov/
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entered the same way in NPSTORET (Vital Signs Water Quality Data 
Management and Archiving). In NPSTORET, four fields over to the right is the 
Lab Remarks field where one can select "EHT" and/or other remarks/data 
qualifiers. 
 
Examples of other details to be included in protocol narratives or SOPs rather 

than in central monitoring plans: 
 

More details on sampling locations and method specifics.   
 
For example, in chapter 4 of the central monitoring plan a table might say that 
chlorophyll a was the parameter to be monitored. SOPs with each protocol should 
document the rest of the details. For example, a field methods SOP might clarify 
that chlorophyll a is to be monitored using field water collection procedures of the 
USGS field manual. A lab methods SOP might then further clarify that in the 
USGS national NWQL lab in Denver would do the work using USGS Schedule 
1637 method. Alternatively, the lab SOP might specify another method (such as 
EPA method 445.0 or APHA method 10200H-4), was to be used. The entire 
method used should be copied and included as appendix to the appropriate SOP. 
 
If flow or water level is to recorded, will it be qualitative or quantitative?  
 
What field instrumentation will be needed? 
 
What pre and post season activities are required? 
 
The field methods SOP should detail how will samples be collected and 
preserved, what containers will be used, and what maximum holding times were 
used. Unless otherwise justified, use holding time guidance in 40 CFR Part 136 to 
136.3 and appendices.  

Secondary Data Collection from Existing Data 
 

It is not unusual for both the NPS and potential partnering agencies to have the 
generic problem of being short of funding for new sampling but also already having a 
substantial amount of data that has been collected but that has not been well summarized 
or analyzed for issues of concern to management or trends.  

In some such cases, a high priority and proper use of NPS VS water quality 
funding may actually be to perform “secondary data collection” (one type of “re-
sampling”) of raw data out of existing regional reports to find the data relevant to NPS 
needs. This is one type of “data collection,” but the distinction is that one is not going out 
in a waterway and collecting brand new raw data.  

Such data can be periodically summarized with an emphasis on identifying hints 
of trends or threshold exceedances relevant to NPS management needs.  

In typical such scenarios, the NPS would develop relatively short secondary data 
collection protocols and SOPs. These would summarize decision criteria for deeming 

http://www.nature.nps.gov/water/infoanddata/index.cfm#NPSTORET
http://www.nature.nps.gov/water/infoanddata/index.cfm#NPSTORET
http://water.usgs.gov/owq/FieldManual/


 27

data comparable enough for the purpose of merging into statistics and/or using at all. For 
example, how different would measurement quality objectives for QC sensitivity, 
precision, and bias have to be before the data would not be considered comparable 
enough to merge into one statistical analysis? For general data usability, will only data 
with adequate QA/QC be considered useable, and how will adequate be defined? See 
definitions of useful and effective data in Part B (the longer version). 

Other than that, the networks would also typically copy the protocols and SOPs 
used by other agencies to collect the data. In other words, there is still a need to archive 
all protocols and SOPs used by the other agencies, and put them in an appendix or other 
place that they can be found in future NPS Vital Sign Network sources (NPS. 2005. 
Protocol Development Process NPS Vital Signs Monitoring Program). 

Those methods in the National Environmental Methods Index (NEMI) can usually 
be easily cut and pasted into NPS protocols, SOPs, or additional details in appendices. 
All data collected with Resource Challenge Money, even data “re-sampled” (secondary 
data collection) from other agencies rather than collected new by the NPS, needs to be in 
local network databases (to the degree that it documents data used in NPS analyses) as 
well as in National STORET, and data users need to be able to find the method details in 
the SOPs or associated appendices. 

There have already been some success stories where small amounts of NPS 
funding combined with partnering from other agencies has resulted in the hope of 
producing products of great utility not only to the NPS but to the partnering agencies (see 
Appalachian Trail Vital Signs as one example).  

In a similar vein, an example of a non-NPS effort to integrate data from multiple 
agencies was a State of Maryland effort that (although a bit short on data comparability 
documentation) has interesting GPRA or “report card” type summary graphics on 
multiple water quality and biological response integrator variables (Maryland. 2004. State 
of Maryland Coastal Bays). 
 

V. Monitoring Design Summary in Protocol Narrative 
 
The QA topics of overall monitoring, design, representativeness, and target 

populations are discussed together, because the way one assures representativeness is to 
name the target population and then design the monitoring to sample the target 
population in such a way that the samples obtained: 1)  are representative of the target 
population, and 2) help answer previously identified questions.  

By the time NPS VS networks are working on protocols and SOPs, many basics 
relevant to these topics should have already been summarized in chapter 4 of the central 
monitoring plan. The new task is to put additional detail about target populations and 
how representativeness will be assured in each protocol narrative.  

Target and/or sampled populations can be summarized in a table in the protocol 
narrative. Additional detail on exactly what will be done to ensure representativeness 
could be placed in the representativeness section of the QA/QC SOP.  

A domain is basically a synonym for a subpopulation, like a Sitka Spruce area 
grouping, which might be a domain but is not recommended stratum as it can change 
with forest fires, etc.  

http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://science.nature.nps.gov/im/monitor/protocols/ProtocolDevelopmentProcess.doc
http://www.nemi.gov/
http://www1.nature.nps.gov/im/units/netn/downloads/APPA_report_VsSummary_NETN_01302006.pdf
http://www.mdcoastalbays.org/archive/2004/MCB-State-Bay-2004.pdf
http://www.mdcoastalbays.org/archive/2004/MCB-State-Bay-2004.pdf
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Representativeness 
 

Whether representativeness is considered QA or QC, a key question is: “How 
does the monitoring plan assure that the samples measured will be representative of the 
named target population”? 

Representativeness is most often thought of a qualitative part of QA. One 
typically ensures representativeness statistically by having defendable monitoring 
designs, typically incorporating at least some randomness. This is suggested not only 
herein but also in generic (not just water quality) Vital Signs monitoring guidance 
documents (S. Fancy. 2000. Guidance for the Design of Sampling Schemes for Inventory 
and Monitoring of Biological Resources in National Parks). 

Representativeness is a basic that needs to be discussed in a complete manner in 
every QA/QC SOP. It also needs to be discussed in less detail in the protocol narrative. 
Together the protocol narrative discussions and SOPs need to answer the following 
questions:  “Representative of what?”  These questions need to be answered even if 
USGS or other widely used protocols are utilized. 

Department of Interior (DOI) and Park Service information quality guidelines, as 
well as more generic NPS QA/QC guidance documents encourage “a high degree of 
transparency.” 

One reason that defined target populations or sampled populations are compared 
to sampling designs and questions to be answered is to help insure transparency. In other 
words, don’t hint that your conclusions apply to all waters of the park when they really 
are only applicable to daytime only, late summer only, low-flow conditions only, riffles 
only, one stream only, or near one specific bridge only.  

There is growing recognition that unless care is taken to ensure 
representativeness, data can be of little value, no matter how good the measurement 
performance is for precision, bias, detection limits, etc. In other words, ensuring data 
quality means not only insuring analytical quality but also sample representativeness of 
the target population given the questions to be answered.  

A helpful and instructive example exercise on how hard it is to pick a 
representative sample based on “what seems right”, is found in the USGS exercise “Can 
you select a representative sample?”  

Given what is known about variability in time and space, how will the sampling 
scheme insure that the values obtained will be representative of the target population 
being monitored (Checklist for Review of Vital Signs Monitoring Plans)? If the answer is 
not in the protocol narrative, a statement should be made in the narrative as to where to 
find the answer. As one hypothetical example, the protocol narrative might state: 
 

 “Twenty five to fifty stratified random samples (or spatially balanced 
probabilistic-selected samples) will be collected from all flowing waters in the 
park. All flowing waters of the park, at all times of day and times of year and all 
locations, will have a chance to be selected, assuring representativeness to all 
flowing waters of the park. The target population and the sampled population are 
both “all flowing waters of the park” (see more detailed discussion in the 
representativeness section of the QA/QC SOP attached to this protocol).” 
 

http://science.nature.nps.gov/im/monitor/docs/nps_sg.doc
http://science.nature.nps.gov/im/monitor/docs/nps_sg.doc
http://www.nps.gov/policy/DOrders/11B-final.htm
http://www.pwrc.usgs.gov/brd/RepresentativeSample.htm
http://www.pwrc.usgs.gov/brd/RepresentativeSample.htm
http://science.nature.nps.gov/im/monitor/docs/MonitoringPlanChecklist.doc
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Although this would be a good example, most monitoring networks would 
probably reject something this broad due to cost and other practical considerations. A 
network might start with a very broad definition of the target population when first 
writing chapter 4 of the central monitoring plan. However, later when they start further 
developing protocols, SOPs, and monitoring plan optimization steps, they would 
probably then whittle it down to something more realistic. See more realistic examples 
for copper and arsenic below. 

Target Populations versus Sampled Populations 
 
The target population is simply the larger universe of all possible values (bounded 

in time and space) that one is sampling from and wishes to make statistical inferences 
(conclusions) about. This definition assumes the ideal situation where the target 
population and the population actually sampled are the same. Note to biologists: the 
“target population” usually does not necessarily mean a biological population in the sense 
that biologists often use the phrase, as a specific level of organization (contrasted to the 
higher “community” or lower “individual” scales of organization). 

Many monitoring and statistical guidance documents state that a target population 
and a sampled should ideally coincide. For example, an OMB committee came to this 
conclusion and also stated that if there is a large set of units in the target population that 
has no chance of selection, the design is not a probability survey (Federal Committee on 
Statistical Methodology, OMB. 1988. Statistical Policy Working Paper 15).  

Most monitoring networks cannot afford to randomly sample all habitats at all 
times and in all places. Therefore, it is often useful to initially define target populations in 
very general terms (say all waters or all flowing waters or the park or network) and then 
later specify a more restricted “sampled population,” with inference only extending to the 
sampled population. 

If monitoring networks decide to make a distinction between target populations 
and sampled populations, (EPA, 2006, Frequently Asked Questions - Survey Design . 
EMAP), then it is important to define both in as much time and space detail as possible. 
The exact project-specific sample frame should also be defined, and also how often the 
frame will be re-done in long term monitoring (every 15 years, every 30 years?). It is 
really better to define target populations in terms of the larger population of potential 
values rather than in more vague terms such as the resource about which information is 
wanted. 

For example, if no sampling is to be done in the winter or at night, the sampled 
population and sphere of inference or conclusions should not include night time or winter 
conditions. 

In final reviews about whether or not what is proposed makes sense, networks 
need to compare the sampled and target population to the questions to be answered and 
extent of inference.  
 
Copper Example: 

 
For example, suppose the question is “does the concentration of copper in the 

water column in all flowing waters of the park ever exceed state chronic water quality 

http://www.fcsm.gov/
http://www.fcsm.gov/
http://www.epa.gov/nheerl/arm/terms.htm
http://www.epa.gov/nheerl/arm/terms.htm
http://www.epa.gov/nheerl/arm/surdesignfaqs.htm#whatpopulation
http://www.epa.gov/nheerl/arm/terms.htm
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standards for aquatic life?” In this case, the network would typically need to consider 
when worst case conditions typically occur. If the network really wants to determine if 
there were ever any exceedances of the standard in any flowing waters anywhere in the 
park, then one would not want to restrict sampling to riffles only. Furthermore, if one 
wanted to know if copper standards were ever exceeded, then one would sample at night, 
the time where water column samples of copper tend to be the highest, not during the 
day. Fish and other aquatic life do not just live in the water during the day.  

To answer this question, one must consider worst-case conditions. One would 
restrict sampling to short summer index period (for example, July and August low flow 
periods), if one already had reason to believe that is when copper concentrations would 
be the highest.  

After considering the above example for copper, the network might realize that it 
was unrealistic considering budgets available and decide to make some new monitoring 
plan optimization changes in 1) target or sampled population, 2) extent of inference, and 
3) the basic monitoring design. If the network really wanted to answer the question of 
copper standards exceedance, the discussion in the protocol narrative might include the 
flowing example.  

 
1. The target population might still be “waters of the park,” but only if the 

network also defined a “sampled population” and only if the sphere of 
inference and conclusions are not to extend beyond that sampled population.   

2. In the study design part of the protocol, the network might clarify that were 
stratifying by time of year, by flow conditions, and by night-only times for 
sampling. If the network or their advisors prefer not to call these restrictions 
strata, they can simply call them “response design details.”  

3. Again, for emphasis, no matter what terminology is used, the key factor to be 
stated in the protocol narrative discussion of target populations, 
representativeness and monitoring design, is that sampling will, in fact, be 
done only during those restricted spheres of time and space, and that the 
extent of statistical inference (and the sampled population) will not extend 
beyond those restrictions. 

4. The type of probabilistic sampling design should be listed in the protocol 
narrative (random, stratified random, or spatially balanced random hybrid 
designs such as the “GRTS” design. The type of design could be lined up with 
questions and basic approaches in a table in the protocol narrative. Some sort 
of probabilistic design would be needed if inference were to be made broadly 
beyond the areas and times immediately sampled. 

 
Budgets often restrict the sampled habitats, sampled locations, and/or sampling 

times. The sampled population would seldom include all waters of the park (big rivers, 
small wadeable streams, lakes, wetlands, and ponds). Indeed, different protocols & SOPs 
would typically be needed for each of these radically different types of habitats. 

Refine Monitoring Design and Representativeness Iteratively  
 



 31

The planning process is typically iterative with continual refinement, so when 
changes are made in the protocol narrative and SOPs, go back and make sure all of the 
related discussions in Chapter 4 of the central monitoring plan are still correct and 
consistent with the additional text. 

For example, suppose a network initially named a target population as “flowing 
waters of the network.” Suppose further that sampling was in fact only going to be done 
in the daylight in low flow conditions during a July and August summer index-period, 
and only riffles were going to be sampled. The sampled population (and sphere of 
inference and conclusions) then includes only those potential values that could be 
measured during those very specific conditions. 

As an example of how monitoring planning often proceeds in an iterative manner 
in the gradual fine tuning of monitoring details, consider representativeness. After 
thinking more about representativeness, the network might reconsider some of the “target 
population” details (discussed just above).  

For example, would the network really be able to do the night-time sampling on a 
regular basis? Is that really the most important question to answer? The network might 
decide that it was just not realistic to sample at night. They might consider answering a 
question about daytime target populations instead, considering the limited monitoring 
funds available and other real-world practicalities.  

Such changes are not unusual when monitoring networks are optimizing 
monitoring designs. Often monitoring networks have more vital signs, measures, and 
questions than they can answer with the budget at hand.  

Again, optimization steps usually include throwing out vital signs, measures, 
questions or strata in time or space. Some potential monitoring approaches might be 
thrown out because they require night time sampling or other aspects considered 
impractical or dangerous. Others might be thrown out because some other agency is 
already covering the monitoring. After calculations of minimum detectable differences 
over longer time periods, still other measures might be thrown out due to excessive 
variability (even at pristine sites) and a resultant inability to find even large magnitude 
trends against the background of the high variability (high noise). Optimization might 
also include restricting the target population in time and space. 

Consider Interagency Design Recommendations: 
 
To help make sure that 1) objectives, 2) questions to be answered, and 3) 

monitoring design details; all line up with each other and with what will be done to assure 
representativeness; we recommend that Interagency recommended tables (ACWI and 
NMQMC. 2006. A National Water Quality Monitoring Network for U.S. Coastal Waters 
and their Tributaries) be included in protocol narrative drafts. Such tables would be along 
the lines of the following (the following is just an example and would have to be 
modified according for Park and network-specific details):  

 
Alignment of Objectives and Management Questions 

 
Objective Management Questions 

1. Define status and trends of key water What is the condition of the Nation's 

http://acwi.gov/monitoring/network/design/Entire_Report_v18_060506.doc
http://acwi.gov/monitoring/network/design/Entire_Report_v18_060506.doc
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quality parameters and conditions on a 
nationwide basis. 
 

surface, ground, estuarine, coastal, and 
offshore waters? 
 
Where, how, and why are water quality 
conditions changing over time? 

2. Provide data relevant to determining 
whether goals, standards, and resource 
management objectives are being met, thus 
contributing to sustainable and beneficial 
use of coastal and inland water resources. 
 

Are strategies that protect or remediate 
water quality working effectively?  
 
Are we meeting water quality goals and 
standards? 

3. Provide data to identify and rank existing 
and emerging problems to help target more 
intensive monitoring, preventive actions, or 
remediation. 
 

What are the water quality problems? 
 
Where are the water quality problems? 
 
What is causing the problems? 

4. Provide data to support and define 
coastal oceanographic and hydrologic 
research, including influences of freshwater 
inflows. 
 

What research activities will help us to 
understand water resources and ensure 
they are sustainable? 

5. Provide quality-assured data for use in 
the preparation of interpretive reports and 
educational materials. 

All management questions require these 
data. 

 
In the protocol narrative, networks are supposed to reiterate earlier questions and 

make them more detailed in time and space. The ACWI and NMQMC 2006 document 
(op.cit, above) also gives the following example of a Monitoring Network Design 
Summary. Something similar to this would be also be helpful in NPS protocol narratives. 

 
 

Resource 
component 

 
Purpose 

 
Reporting 

unit 

 
Number 
of sites 

per 
reporting 

unit 

 
Total 

number 
of sites 

 

 
Site 

Selection 

 
Sample 

frequency 

 
Sample 
interval 

Condition 
of US 
estuaries 

National & 
IOOS 
regions 

50 per 
IOOS 
region 

500 sites 
sampled 
per year 

Probability-
based design 
that will 
assure 
geographic 
coverage 

Once per year 5 years 
(repeat year 
1 sites in 
year 6) 

 
Estuaries 
 

Condition 
of 
individual 
estuaries 

Individual 
estuary 

50 sites per 
estuary 
except for 
very small 
estuaries 

1500 
sampled 
per year 
(50 sites 
X 30 
estuaries 
sampled 
per year) 

Probability-
based design 
that will 
assure 
geographic 
coverage 

Monthly for 
physical and 
chemical 
conditions in 
water column; 
Once per year 
for biological 
characterization 
and sediment 
quality 

5 years 
(repeat year 
1 estuaries 
in year 6) 
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Transport 
through 
estuaries 

Individual 
estuary 

15 sites per 
estuary 

2235 
(15 sites 
X 149 
estuaries) 

Distributed 
along salinity 
gradient 
from major 
river mouth 
to seaward 
outlet 

Monthly for 
physical and 
chemical 
conditions in 
water column 

On going 

Short-term 
variability 

Individual 
estuary 

2 per 
estuary 

298 
(these 
sites are 
subset of 
sites used 
for 
transport) 

At two ends 
of salinity 
gradient 

Continuous 
monitoring 

Continuous 

 
In the table above, the Southeast Coast Network NPS Vital Signs Monitoring 

Network and some other networks are basically using line two to estimate proportions 
impaired at individual parks (in different years) and the last line (short-term variability) 
to understand the diel component of variability at two sites per park representing extreme 
cases. Both of the tables above (modified as necessary, remove the lines or columns not 
applicable to the individual network) would be helpful for inclusion in protocol narrative 
text summaries. 

Representativeness versus Diel Water Column Measures: 
 
It is well known that oxygen, pH, and temperature (the core of our required 

parameters) tend to vary substantially in a 24 hour period in many shallow surface waters 
strongly influenced by sunlight energy. Less well known is the fact that concentrations of 
nitrates, metals, and many other water column parameters tend to do the same. In fact, it 
is more difficult to name example water quality parameters that never show diel signal 
changes in shallow waters than ones that do (see additional discussions in Part B). 

Additional diel discussions, including lake discussions are available to NPS 
employees on the NRPC Sharepoint diel site. 

When dealing with measures that show strong diel signal strength changes, one 
needs to consider how sampling plan details need to optimized to enable one to find long 
term trends. If sampling crews just happen to sample in the morning for a number of 
years and then a later crew just happens to sample late afternoons, a change in the data 
may simply reflect the changed time of sampling rather than a true environmental change. 

Likewise, the target population is seldom all values that could be obtained during 
random sampling over 24 daily cycles, so the factor needs to be considered when naming 
target populations and trying to ensure the sample values will be representative of that 
target population. 

As an instructive hypothetical example, let’s suppose that not only is copper a 
potential issue at park, but so is arsenic. Suppose further that another equally high priority 
question was “Do water column concentrations of arsenic flowing into our linear 
(riverine habitat) park ever exceed water column samples for arsenic?” That would be an 
easier question to answer, because water column values of arsenic tend to be highest in 
the afternoon rather than in the middle of the night. Also, only one site would need to be 
monitored. The protocol narrative discussion might then be changed to reflect the 
following: 

http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://nrpcsharepoint/wrd/water_quality_monitoring/Lists/Diel%20Variation/AllItems.aspx
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1. The protocol narrative would state that a “targeted” (“judgmental”) sampling 

design is appropriate to answer the question rather than probabilistic or random 
design. The question does not relate to all waters of the park and to answer it we 
only need to sample where the river flows into park jurisdiction  

2. Likewise, the target population is no longer “flowing waters of the park.” Now it 
relates to potential daytime values that might be collected in only one location. 
The sampled population might be “water flowing into the park, where the river 
crosses into the park boundary (or close).”  

3. In this hypothetical example, let’s assume that the network has no knowledge of 
one season being worse than another. The protocol might then state that 30 
sampling dates (during the course of a year) will be picked randomly. If arsenic is 
worst case during a narrow seasonal index window of time, the protocol narrative 
should state that and specify monitoring will be done within that window of time. 

4. To capture worst-case conditions for arsenic, sampling of the water column would 
need to be done in the afternoon only, when arsenic was likely to be highest in the 
water column. 

5. The sampled population and extent of inference would therefore not extend 
beyond afternoon conditions. Also, since sampling will only be done in one 
location (where the river comes into the park), the extent of geographical 
statistical inference will not extend beyond that one location 

6. In the study design part of the protocol narrative, the network might clarify that 
were stratifying by hydrograph limb period to try to take out most of the 
variability associated with many contaminants (especially metals, organics bound 
to soil or suspended particles, conductivity/Specific Conductance, or phosphorus 
compounds) that tend to spike during the rising limb of a storm event or snow 
melt event. Variability would tend to be lower during stable low flow periods, so 
one strategy to reduce variability (and therefore have a better chance of detecting 
a change of certain size) would to only sample (and to only infer about) the 
populations of values during stable low flow periods.  

7. To further reduce variability, monitoring networks might also consider stratifying 
by time. For example it is common to sample only during narrow seasonal index 
periods say late summer only for example). 

8. For trend detection for many parameters subject to large diel swings, another 
potential strategy is to stratify by time of day (hours after sunrise or before sunset) 
to try to take out most of the diel variability. The reason for trying to reduce 
variability is to enable detecting of trends of a magnitude of concern within a 
reasonable period of time. Most (shallow, sun driven) water-column parameters 
show diel variability in certain types of locations, especially pH, oxygen, 
temperature, chlorophyll, many dissolved metals, and nitrates. One sampling 
strategy that could be stated in protocol narratives is that sampling will be done on 
a diel basis at first and then later done in restricted periods of time to either get 
variability down or to capture worst-case time periods. Such details are typically 
part of response design SOP details. For metals and a few other “highly-pH-
dependent” parameters, the variation is sometimes more dramatic in shallow 
flowing waters more heavily impacted by sun energy and diel pH changes, waters 
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not well buffered, and/or sites having a relatively large proportion of the water 
column areas being sampled in contact with photosynthetic organisms (like algae, 
either benthic or phytoplankton) and sediments or suspended sediments 
containing metals.  For diel patterns, see Irwin 2004. Considering Variability 
When Looking for Trends presentation and Part B for details. For other typical 
examples, see also USGS 2007. Development and Research: Diurnal Metal 
Variations in Streams gallery. Although it doesn’t seem to cover diel issues, 
another general reference on risk from metals is EPA 2007. Framework for 
Metals Risk Assessment 

9. There appears to be less information on diel cycles for water column nutrients and 
metals in large lakes and reservoirs than in streams. Here are few tidbits we have 
found to date: 

 
Discharges from reservoirs can often be less variable than for streams, but 
such discharges (especially diel pattern discharges, but also just bottom 
water discharge) from large reservoirs can nevertheless change diel 
patterns downstream (see S. J. Hueftle and L.E. Stevens. 2001. 
Experimental Flood Effects On The Limnology Of Lake Powell Reservoir, 
Southwestern USA, Ecological Applications, Volume 11, Issue 3 (June 
2001). 
 
Gaseous mercury diel patterns have been studied in reservoirs (Dill, C., 
Kuiken, T., Zhang, H., Ensor, M. Diurnal Variation of Dissolved Gaseous 
Mercury (DGM) Levels in a Southern Reservoir Lake (Tennessee, USA) 
in relation to solar radiation. The Science of the Total Environment, 357, 
176-193, 2006). Several lake and wetland studies appear to indicate that 
highest water column mercury concentrations in shallow lakes and 
wetlands would be somewhere between noon and late afternoon, but it 
depends on local conditions as the peak could come earlier in some lakes. 
The loss of mercury from lakes is related to DGM concentrations in 
surface waters, wind speed across the air/water interface, and air and water 
temperatures (for more information see Siciliano SD, O’Driscoll NJ, Lean 
DRS (2002). Microbial reduction and oxidation of mercury in freshwater 
lakes. Environ. Sci. Technol. 36:3064–3068. [PubMed] and various 
mercury publications (Krabbenhoft, D.P., J.P. Hurley, M.L. Olson, and 
L.B. Cleckner. 1998. Diel variability of mercury phase and species 
distributions in the Florida Everglades. Biogeochemistry 40:311-325; and 
Krabbenhoft, D.P., C.C. Gilmour, J.M. Benoit, C.L. Babiarz, A.W. 
Andren and J.P. Hurley. 1998. Methylmercury Dynamics in Littoral 
Sediments of a Temperate Seepage Lake. Canadian Journal of Fisheries 
and Aquatic Sciences. 55:835-844). 
 
Diurnal cycling of oxygen, like pH cycling, is driven by sun energy, and 
variations are sometimes higher in eutrophic lakes. Slack water in shallow 
areas of lakes can increase algal and SAV activities, so it should not be 
assumed diel cycling is not in issue for both pH and metals in lake or 

http://www.esajournals.org/perlserv/?request=get-toc&issn=1051-0761&volume=11&issue=3
http://www.esajournals.org/perlserv/?request=get-toc&issn=1051-0761&volume=11&issue=3
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reservoir environments, it depends on many factors, and changes in pH do 
not universally guarantee big changes in dissolved metals. Other factors 
might include photo-reactivity and various biological processes 
controlling the movement of metals in and out of biofilms or other biotic 
classes. 
 
Not only can dissolved metals concentrations change on a diel basis, but 
the species of the dissolved metal can also change. For example, Maest et 
al. 1992, looked at diel cycles of arsenic and iron REDOX species in 
Mono Lake, California, and found that during the day, dissolved iron was 
present as Fe2+ -- in the presence of dissolved oxygen and at pH 10 -- and 
as Fe3+ at night. The pH was not changing and the presence of reduced 
iron in the upper water column during the day could have been related to 
photoactive Fe-organic complexes. The authors did not see any obvious 
photo-reduction of arsenic, but dissolved arsenic did change from arsenate 
(AsV) to arsenite (AsIII) below the chemocline in the lake (A.S. Maest, 
S.P. Pasilis, L.G. Miller, and D.K. Nordstrom, 1992. REDOX 
Geochemistry of Arsenic and Iron in Mono Lake, California, USA, In 
Water-Rock Interaction VII, Y.K. Kharaka and A.S. Maest (Eds) 
Balkema, Rotterdam, pp. 507-511). 

Representativeness versus Tidal Cycle Signals: 
 

Strong tidal cycles can make the task sorting diel signals out from tidal signals 
very difficult. The most ideal scenario would be able to sample at the same time of day 
during a specific time of the tidal cycle, which is very difficult or impossible to pull off. 
It depends of the questions one is trying to answer, but sometimes the tidal signal can 
overwhelm the diel signal, so the Southeast Coast NPS VS network has settled on 
methods recommended by NOAA’s National Estuarine Research Reserve program 
guidance. The NOAA SOP specifies taking nutrient and Chl samples between 3 hours 
before low tide & low tide, to at least consistently sample the same water body (the 
estuarine waters without the marine influence). In one sense this stratifies time to cover 
limited and consistent tidal stages, and so also limits the target population but probably 
increases the chance of detecting trends (Eva DiDonato, NPS, Personal Communication, 
2006). 

A contrasting approach, which would increase the universe of inference but would 
probably also increase variability (complicating trend analyses), would be to randomize 
more completely in both time and space. One advantage of a probabilistic survey is that 
[as long as one has covered both space and time adequately with sufficient sample sizes 
to ensure representativeness of the true underlying population being sampled, one will 
presumably eventually be able to demonstrate that the full range of conditions have been 
covered. In this manner, the extremes from both tidal and diel factors will be covered in 
more random probabilistic designs, but at the expense of increasing variability.  

Representativeness in Wadeable Streams: 
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Back to the somewhat easier freshwater wadeable stream scenarios, if the network 
in our hypothetical example decided that they want to keep an eye on copper trends, even 
though they can’t practically sample at night, they might decide to look at trends rather 
than water column exceedances. They might further decide to sample copper in 
sediments rather than the water column. If they understood local variability enough, 
response design details might call for other sampling restrictions. For example, in one 
small stream in Yellowstone, it was discovered that variability could be reduced by 
sampling metals in sediments only in low flow late summer conditions and only in the 
sediments of low gradient riffles, where variability is lower than in the water column or 
in other sediment microhabitats (such as backwater pools).  

Trying to get the variability down is done so that the monitoring network can have 
a reasonable chance to detect a change of concern (say a 30% change in means over a 
stated time period (say 1 year or some alternative time period) without collecting 
hundreds of samples every time they went out. See Yellowstone example in Part B. Some 
networks (and many states) use hybrid sampling plans that include both 1) targeted sites 
(such control sites or historically sampled bridge sites) to answer site-specific or other 
limited inference questions and 2) probability-selected sites that allow for broader 
inferences to larger areas of the park or waterbody. Such hybrid designs are often good 
compromises but sometimes tend to stretch funding even further and make getting 25-50 
samples per year in each park more difficult. Why do we need 25-30 samples? See EPA 
explanation ("Why a sample size of 50").  

At least one NPS network (Southeast Coast) has tentatively proposed to solve the 
problem of getting enough samples for a good estimate of a proportion by taking 25-50 
probabilistic samples per year at one park only, and rotating to other parks in future 
years, To better understand temporal variability at each park each year, the network has 
also proposed to use continuous monitoring of NPS required parameters at two sites in 
each park: 1) A representative impacted site and 2) A relatively un-impacted (or 
relatively pristine) site. Other factors are also sometimes used (for example salinity in 
estuarine sites) to bound two extremes. 

Contrasting relatively pristine with relatively impacted has the advantage of book-
ending intervals that would define extremes at the two kinds of sites. This approach for 
continuous monitoring of a few key parameters at key sites was inspired by a consistent 
approach NOAA uses in its Marine reserve monitoring program. NOAA does continuous 
monitoring for our NPS required four parameters (temperature, salinity/conductivity, pH, 
and oxygen) and also measures turbidity at four sites within each reserve. At least one 
site monitored is a relatively impacted site and the others are relatively pristine (NOAA. 
2007, Water Quality Indicators Measured by Reserves Webpage).  

The idea of combining probabilistic sampling (to answer large area questions) 
with fixed site continuous monitoring at two extremes (to answer questions about short 
term variability and trends at fixed sites) has now been recommended by interagency 
groups. In fact it was highlighted in the 2006 recommendations of ACWI and NMQMC. 
In this case, salinity was used to define the extremes rather than impacted and less 
impacted (ACWI and NMQMC. 2006. A National Water Quality Monitoring Network 
for U.S. Coastal Waters and their Tributaries).  

http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://www.epa.gov/nheerl/arm/surdesignfaqs.htm#samplesize50
http://www.nerrs.noaa.gov/Monitoring/Water.html
http://acwi.gov/monitoring/network/design/Entire_Report_v18_060506.doc
http://acwi.gov/monitoring/network/design/Entire_Report_v18_060506.doc
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If All Sites Were Selected With a Judgmental Approach  
 
If absolutely no randomness is be involved in picking sites to sample, the 

rationale should be justified on a network-specific basis. Why not? With what logic 
would a targeted design assure representativeness, what is target population, and why do 
the pros of the targeted design outweigh the cons? Typical pros given include limited 
funding, the need continue long term historical trend data at specific sites, and just the 
complexity of balancing changing target populations and changing (optimal) sample 
frames. 

 
Note: The phrase “sample frame” Refers to the list or map that identifies every 
unit within the target population of interest, a physical representation of the target 
population. Such a list is needed so that every individual member of the 
population can be identified unambiguously. As explained in the EPA definition 
of the sample frame, the individual members of the target population whose 
characteristics are to be measured are the sampling units.”  
 
In human sampling surveys, a phone book is often the sampling frame. The phone 
book contains all the names in the target population, assuming the target 
population is all the names in the phone book. Assuming that the phone book is 
supposed to be) representative of all the humans in a town brings in a potential 
bias problem, since not all humans have land-line phones and of the humans that 
do have such phones, not all choose to be listed, and of those listed, some groups 
of people are home or answer such calls more than other groups of humans. An 
even more severe problem in water quality sampling is that if one considers all 
potential water quality concentrations that could be measured in that general area 
and that general time-period as “the target population” one never really has a 
complete list of all of those values. If one had all the values, one would have a 
census and sampling a smaller set of values to infer to the larger population would 
be unnecessary. But we seldom do have this, and what we tend to have instead is 
a general location in space of (say for example, all perennial streams in a certain 
area) and a general location in time (daytime, say July and August). A further 
complication is that over a long period of time in long term monitoring (say 100 
years), both the target populations and the optimal sample frames (optimal to 
sample those changing target populations), will be changing too. No one would 
consider using a phone book that is 100 years old as a sample frame. These types 
of real world issues would tend to necessitate eventually (periodically) re-
randomizing from new sample frames, or at least periodically including some 
percentage of new sampling locations from new sample frames. 
 
If a network chooses to make all sites judgmental or targeted sites, with absolutely 

no randomness at all, they still need to address representativeness and target populations. 
In the absence of convincing evidence to the contrary, the target and sampled 
populations, as well as the extent of inference, will all be limited to those sites sampled 
only. 

http://www.epa.gov/nheerl/arm/terms.htm#or
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Even if the stream near a bridge is selected in for long term monitoring, there are 
things that can be done to approve the quality and usefulness of the data. These might 
include:  

 
1. Sampling far enough way from bridges to minimize bridge-effects (deicer salts, 

dust, vehicle pollutants, trash, changed hydrology, etc.) to help with 
representativeness with this general area of the stream and not just the (often 
unusual) conditions right at the bridge.  

2. Once the network has picked the area to sample (say upstream of a bridge, 
possibly in riffles only), they can still pick exactly where to sample in the riffle 
randomly, using simple stop watch field randomization (see Part B). 

 
Alternatively a network may decide to use guidelines such as those used by the 

USGS National Water-Quality Assessment Program (NAWQA) sediment quality 
collection protocol to maximize data comparability with NAWQA. NAWQA specifies 
collecting sediment samples in low flow periods only (to reduce seasonal and flow driven 
variability), and they specify compositing samples from different microhabitats (within 
and among different zones) to get an average for a reach and to reduce variability driven 
by habitat type (and to make the samples more representative of a larger area).  

For water column parameters, the USGS Field Manual gives decision rules about 
how well mixed a river has to be to allow for a single grab sample at midpoint rather than 
compositing several samples from a cross section: 
 

"If profile values of pH, conductivity, temperature, and DO differ by less than 5 
percent and show that the stream is well mixed both across the section and from 
top to bottom, a single measurement point at the centroid of flow can be used to 
represent field-measurement values of the cross section" (USGS Field Manual, 
Wilde and Radtke chapter 6: Section 6.0.2.A. page INFO-11,). Essentially, this is 
a bit like having a measurement quality objective of differing by no more than 5% 
for precision+ (NPS term for nearby but different replicate samples). 
 
Using such guidelines is fine and often has the advantage of helping achieve data 

comparability with other agencies with other large regional data sets. Again, one still has 
to address the question: “representative of what?” In other words, the USGS method only 
assures that a single sample is representative of a cross section at that single location in 
the river at that point in time. It does nothing to insure that the single sample is 
representative of locations up or downstream or at other times. 

Whatever understanding one has of terms like strata, the target population, the 
sampled population, and zone of statistical inference, all such phrases should be clearly 
defined and be transparent to readers.  

If the agency believes that sampling a cross section of surface water will be 
representative of some areas upstream that have not been sampled, how far upstream, and 
based on what data? At minimum, comparisons should be done before starting 
monitoring to check all such assumptions, and these should be repeated occasionally over 
the years. Otherwise, such beliefs will be based strictly on speculation rather than on any 
actual data. It would take many such comparisons (more than most networks can afford) 

http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://ca.water.usgs.gov/pnsp/pest.rep/bs-t.html
http://ca.water.usgs.gov/pnsp/pest.rep/bs-t.html
http://water.usgs.gov/owq/FieldManual/Chapter6/final508Chapter6.0.pdf
http://water.usgs.gov/owq/FieldManual/Chapter6/final508Chapter6.0.pdf
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to convince most statisticians and survey design experts. Thus the most common practical 
alternative is simply to state that inference will not extend beyond the particular site 
location (and/or times) that had a chance to be monitored. 

Causation 
 
Documenting causation (not a requirement in NPS VS monitoring) is difficult to 

prove without active manipulation. Inside labs, only one variable is typically changed at a 
time, and the rest are kept constant. This makes it much easier to tease out cause and 
effect stressors. Outside in the environment, countless variables (temperature, rain, wind, 
clouds, solar storm-induced changes in solar radiation, etc.) are changing all the time, 
often in unknown or less than fully-understood ways. So to get at potential causation, one 
usually approaches like those in EPA’s stressor identification document, which 
summarizes strength of evidence analyses using multiple lines of evidence (EPA 2000. 
Stressor Identification Guidance).  

Recently EPA has developed the more user-friendly Causal Analysis/Diagnosis 
Decision Information System (CADDIS). This system provides a pragmatic guide for 
determining the causes of detrimental changes and undesirable biological conditions 
observed in aquatic systems. A Caddis summary table on typical types of evidence helps 
explain the concepts. 

In a sideways reference to how tough it is to prove causation in complex outdoor 
systems, a newspaper columnist (Sullivan, J. 1995. Field and street. Chicago Tribune, 
August 1995, quoted in Stow et al. 1998, Long-term environmental monitoring: some 
perspectives from lakes, Ecological Applications: Vol. 8, No. 2, pp. 269–276) stated: 

 
“Right now the Great Lakes are like a very poorly designed experiment set up by 
an incompetent scientist who figured that 600 or 700 variables would be just 
about right for his protocol.” 

 
However, Stow et al. 1998 (op cit.) clarify that “Despite the size and complexity 

of the Lake Michigan ecosystem, the many confounding factors, and relatively noisy 
data, a sufficiently large sample size (n = 589) provides a basis for choosing among 
alternative models that represent different mechanisms and have different management 
implications.” 

None of the above prevents monitoring networks from thoughtfully placing sites 
in such a manner that hints relative to causation can be obtained, but remember that 
stressors tend to change over time and this is long term monitoring. 

Stratification 
 
If a monitoring network has decided to stratify, they should avoid using strata 

where variability characteristics (in time and space) are not well understood or are likely 
to change appreciably during the monitoring period. Keep in mind that this is long term 
monitoring, so eventual change is more likely than for short term projects. It is often safer 
to stratify by factors that change less frequently or dramatically (often geological or 
physical factors), or to handle timing and detailed space issues in the response design 

http://www.epa.gov/ost/biocriteria/stressors/stressorid.pdf
http://cfpub.epa.gov/caddis/index.cfm
http://cfpub.epa.gov/caddis/index.cfm
http://cfpub.epa.gov/caddis/step.cfm?step=16
http://www.esajournals.org/esaonline/?request=get-document&issn=1051-0761&volume=008&issue=02&page=0269
http://www.esajournals.org/esaonline/?request=get-document&issn=1051-0761&volume=008&issue=02&page=0269
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rather than in a more general monitoring design in chapter 4 of the central monitoring 
plan. 

Typical patterns of variability and typical patterns of response to various single 
stressors say nothing about other patterns of variability and other responses not 
considered. In other words, a stratification pitfall is that it is often harder to group sites 
into homogeneous groups, especially for multiple stressors, than one first thinks (S. 
Urquhart. 2000. Adapting a Physical Habitat Protocol).  

Often monitoring planners need to think through collection details carefully in 
order to get variability down to magnitudes that would allow detecting a reasonably small 
change without hundreds of samples, For streams, if variability characteristics are 
understood well enough, one can stratify by habitat types (such as low gradient riffles 
only, or runs only, or snags only). Monitoring groups are sometimes able to document 
that the variability reducing aspects of stratification outweigh the disadvantages. The 
stratum description might be qualified to take into account the changing environment of 
streams, climate change, etc. One can also specify index collection time periods in either 
stratification decisions or in response design decisions. 

A useful document on the typical need for stratified random sampling of outdoor 
environments (classified as non-experimental studies of uncontrolled events) was 
provided by Schwarz 1998 (Chapter 3 in Statistical Methods for Adaptive Management 
Studies. 

Again, if a monitoring network chooses to handle such details under the response 
design documentation rather than calling it stratification or handing them in stratification 
steps (as part of the spatial monitoring design), one can put the needed details in 
individual protocol narratives and SOPs.  

GRTS and Similar Approaches for Assessing Status 
 
GRTS is the acronym used for generalized random-tessellation stratified 

monitoring designs. In some ways, GRTS is a hybrid between random and systematic 
designs. Each site has at least some probability of being selected. In other words, the 
probability is never zero. GRTS designs are designed to ensure a degree of spatial 
balance that can often be lacking in purely random sampling.  
 

Disclaimer: There are other spatially-balanced survey designs that may be as good 
as or better than GRTS, and even when considering GRTS alone, there are 
competing software programs that claim to be implementations of GRTS. 
Furthermore, there appears to be a least some controversy about which programs 
are a narrowly-defined GRTS approach and which are different enough they 
should not be considered GRTS but rather some other way to achieve spatial 
balance in a probabilistic survey design. No government endorsement of one 
particular approach is implied here. The only reason we are focusing a bit more 
on GRTS in this section is that several NPS monitoring networks have proposed 
its use in long term Vital Signs monitoring 
 
Spatially-balanced samples are random samples. They just don't happen to be 

simple random samples or systematic grid samples. Just as with simple random samples, 

http://oregonstate.edu/instruct/st571/urquhart/represent/sld028.htm
http://science.nature.nps.gov/im/monitor/docs/BC_LMH42.pdf
http://science.nature.nps.gov/im/monitor/docs/BC_LMH42.pdf
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a combination of unequal weighting of probability of selection (plus, in some cases, 
stratification to reduce variability) can result in more intensively sampling certain 
targeted sub-regions and help negate the likelihood of getting sites where personal safety 
or access are a big problem.  

NPS generic Vital Signs monitoring guidance points out that while the following 
should be avoided  
 

Judgment sampling, using "representative" sites selected by experts,  
 
two other attributes are helpful when deciding how to sample the named target population 
of interest “Probability samples occur when each unit in the target population has a 
known, non-zero probability of being included in the sample, and always include a 
random component (such as a systematic sample with a random start)” (NPS. 2006. 
Sampling Design Considerations: Where and When to Sample). Probability sampling and 
random components help assure representativeness. 
` For example, the NPS. (2007) document entitled Rocky Mountain Network 
Monitoring Plan states that: “The spatially balanced samples produced by GRTS are 
more representative than those produced by other probability designs”…and “When site 
replacement rules are strictly followed, the representativeness of the final sample is still 
guaranteed.” 

Both GRTS and simple random sampling involve probabilistic strategies. No 
matter how such issues are decided, all decisions should follow a careful and documented 
(in the protocol narratives) thought-process. GRTS can be used with or without 
stratification.  

GRTS probabilistic designs can be good choices when done right, when sample 
sizes per year are high enough, and when all aspects are logically defendable. A big draw 
to such designs is the ability to infer to larger areas and not just to those being sampled, 
while still largely avoiding (though unequal weighting) unsafe sites, sites too logistically 
difficult to sample, etc. As long as sample sizes per year or other logical sampling unit 
are high enough, GRTS designs are can produce status-friendly and GPRA-friendly 
proportions (% of stream miles impaired, % of flowing water achieving water quality 
standards, % of flowing waters where an index results in a rating of excellent, etc.). 

A few additional summary remarks on GRTS are made here, but most monitoring 
networks considering using GRTS or similar variants would be well served by having an 
applied statistician familiar with spatially balanced applied survey designs help sort out 
the details. Many potential pitfalls are too complex to easily and completely summarize 
herein. 

One thing to keep in mind is that GRTS and other probabilistic designs help one 
decide where to collect samples in space, whereas panels and other revisit schemes help 
one decide when to sample across time. Changes in magnitude as well as variability can 
be driven by both changes in time and space. In long term monitoring, if both places and 
timing are changing, then one has to pay attention to how such changes in both time and 
space might complicate or influence long term trend analyses, and whether or not the 
(target) populations being sampled are changing or staying the same. 

For those with advanced quantitative skills, more information on Technical 
Information for Implementing Designs (including unequal weighting, spatially balanced 

http://science.nature.nps.gov/im/monitor/SamplingDesign.cfm
http://www1.nrintra.nps.gov/im/units/romn/monitor/Phase4/ROMN_VSPlanWeb_FINAL.pdf
http://www1.nrintra.nps.gov/im/units/romn/monitor/Phase4/ROMN_VSPlanWeb_FINAL.pdf
http://www.epa.gov/nheerl/arm/designpages/design_tech_info.htm
http://www.epa.gov/nheerl/arm/designpages/design_tech_info.htm
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designs, the four step process of implementing GRTS in general, and download software 
for S-plus and R, are available on EPA EMAP websites).  

Although only SPSURVEY software does GRTS samples for points, lines, and 
polygons, two other programs do spatially-balanced sampling using somewhat different 
approaches:  

 
S-DRAW, available from WEST Inc., is a software implementation of GRTS for 
point (finite) spatial populations. According to the West Inc. website, S-Draw is 
meant to serve the purpose of “GRTS for the Average Joe.” The Heartland NPS 
VS monitoring network (HTLN) used S-Draw in its invertebrate monitoring 
protocol (available on NPS computers on the intranet only).  Specifically, “to 
draw the GRTS samples, main stem sites were weighted by stretch length” and 
HTLN also “employed the reverse hierarchical ordering option, which assures 
that any contiguous set of stretches will be spatially balanced.” 
  
ArcGIS RRQRR uses an alternative spatial-balance algorithm. It also doesn't 
utilize the same hierarchical selection process typically used for GRTS to provide 
spatial balance. Due to the differences, it should perhaps be thought of as a related 
but different way to get spatial balance. Nevertheless, the CSU website claims 
that: “The Reversed Randomized Quadrant-Recursive Raster (RRQRR) algorithm 
is an implementation of the Generalized Random Tessellation Stratified (GRTS) 
algorithm” (Spatially-balanced sampling using RRQRR based on Theobald, D.M. 
and J.B. Norman. 2006. Spatially-balanced sampling using The Reversed 
Randomized Quadrant-Recursive Raster algorithm: A User’s Guide for the 
RRQRR ArcGIS v9.1 tool). 
 
A potentially helpful resource (for those with quantitative backgrounds) is 

additional information from related presentations that were presented at the San Diego 
National Vital Signs Meeting in 2006 (See presentations by Schweiger and Urquhart). 

Will a Probabilistic Monitoring Design be used for Status or 
Trends? 

 
The original GRTS-selected (or simple random selection process) sites help one 

to be able to infer to sites not sampled for short term status, but less clearly for long 
term trends, especially if revisit and new-site addition details are not thought out 
carefully in light of statistics that will eventually be used to analyze for trends. If one next 
repeatedly goes back for the next 100 years to only those exact spots first selected for 
sampling during the first year, then one’s ability to infer more broadly will (eventually) 
be harder to defend. That first GRTS draw might just so happened to have picked sites 
not optimally representative (i.e. biased) of the then-existing target population, a issue 
that re-randomizing or doing additional GRTS draws over 100 years would at least partly 
help correct. The first GRTS draw may become even more or less representative over a 
long period of time. 
If one were trying to accomplish both goals (status and trends), how would optimal 
designs look in typical NPS Vitals Signs monitoring scenarios? There is no single right 

http://www.epa.gov/nheerl/arm/analysispages/software.htm
http://www.epa.gov/nheerl/arm/analysispages/software.htm
http://www.west-inc.com/computer.php
http://science.nature.nps.gov/im/monitor/protocols/Ozark_River_Invertebrates_9-Nov-06.pdf
http://science.nature.nps.gov/im/monitor/protocols/Ozark_River_Invertebrates_9-Nov-06.pdf
http://www.nrel.colostate.edu/projects/starmap/rrqrr_index.htm
http://www.nrel.colostate.edu/projects/starmap
http://www.nrel.colostate.edu/projects/starmap
http://www.nrel.colostate.edu/projects/starmap
http://www.nrel.colostate.edu/projects/starmap
http://science.nature.nps.gov/im/monitor/meetings/SanDiego_06/SanDiego.cfm
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and wrong answer, but whatever the answer is it needs to be logically justified and 
explained in each protocol narrative.  

However, for one example of how it might look, consider the following scenario. 
A network might decide to visit one park per year [Southeast Coast Network (SECN) 
example], or one habitat type per year (say similar high altitude lakes at more than one 
park, [Klamath Network (KLMN) example], with a sample size of say 40, so that would 
could make valid conclusions (such as percent considered impaired) about status in the 
one-year time period. In the SECN example, the next year, they might sample another 
park. In the KLMN example they might visit another habitat other than high altitude 
lakes.  

In either case, let’s say the network attempts to get a sample size of 40 each year. 
Then when revisits are done say 3 years after the first sample collections, instead of re-
randomizing and getting 40 new sites or simply revisiting the exact same 40 sites again, a 
network might decide to revisit 25 to 30 of the exact same sites (for trend analyses) along 
with 10-15 newly randomly selected survey sites (so that one is at least slowly getting 
new randomized sites relevant to broader inferences to a possibly changing target 
population). Then every 15 years (or other logically developed time frame), new GRTS 
draws would be made from a revised sampling frame (reflecting changed conditions), so 
that each year after that the 10-15 new survey sites would be randomly selected from the 
latest sampling frame. Why 10-15 new sites per year? There is no single right answer 
(others could be logically justified), these are just hypothetical examples. The National 
Agricultural Service (NASS) replaces 20% of their sites every year, just as one 
comparison.  

Introduction to Probabilistic Designs for Long Term Trends 
 
One important issue is how long it will take for an original randomization or 

GRTS draw, and the sample frame site selection was based on, to “wear out.” This is not 
a simple issue. A changing target population (and changing optimal sample frames) 
might result in the need to re-randomize and/or change the sample frame. 

GRTS and similar probabilistic survey designs that also involve rotating panels do 
not have a long track record for monitoring long-term trends in natural resources, and 
statistical analyses for long term trends can become pretty complex due to some of the 
factors discussed in this section, reminding all of the need to consult an knowledgeable 
applied statistician). 

Not to be ignored is the fact that over long time periods, target populations tend to 
change. This is one reason that some GRTS experts tend to favor a split panel type design 
that rotate new sites in at several different time scales. Since target populations are 
logically changing in very long term monitoring (and since an optimal sampling frame 
would also be changing) some consideration should be given to possibly re-randomizing 
(or doing another GRTS draw) periodically, perhaps every 15 years or so, though the 
optimal time period might be shorter for some vital signs than for others (Tony Olsen, 
EPA, Personal Communication, 2007). 

Ideally one would have some criteria to trigger the need to redo things, such as 
“re-stratify when 30% of the sampling sites are in a new vegetation type", or "resample 
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when the known set of sites (e.g., wetlands) changes by 25%" or something along those 
lines.  

Over 100 years, not only would the target population change, but also the optimal 
sampling frame. Some areas may become more impacted than now, while other areas 
may become less impacted. Some streams may dry up, while others may change to higher 
flows. Some streams that are now reservoirs may be restored to flowing free. Some 
perennial streams may become dry. Some channelized streams may be restored to more 
natural patterns. As logging and other roads are removed from wilderness, some easy 
access sites may become more difficult. Some smaller streams that now show up on maps 
may become shopping centers. So eventually it will be necessary to do another GRTS 
draw or re-randomize to get representative samples of changing target populations.  

The Southwest Alaska Network Monitoring Plan (Phase III) Chapter 4 addresses 
some related “common sense” tests in rotating panels, although not in a water monitoring 
context: “An important consideration when choosing a revisit design is its ability to retain 
a representative sample across time. A sample that is initially representative may lose this 
quality if there are changes or shifts in population numbers or other attributes during later 
time periods that are no longer captured by the original sampled units. These shifts across 
time could be induced by natural changes (e.g., habitat succession), anthropogenic 
actions, or a combination of both. If large shifts are not expected to occur or if the 
membership design is spatially balanced enough to adequately capture any shifts, the best 
revisit design to detect trend is to repeatedly sample the same plots across time, all else 
being equal. However, repeated visits to the same units could potentially have a negative 
impact on the response, such as trampling in vegetation monitoring plots, which would 
introduce bias”. 

For short-term status monitoring, GRTS allows inference to a broader target 
population not sampled. If sites from that first GRTS draw are repeatedly revisited year 
after year, they become fixed site designs over time. In this scenario, sample size 
estimations are based on paired sampling, which generally demands smaller sample sizes 
for the same amount of statistical power compared to sampling where a new random 
sample is selected each year. Thus, inference to the broader target populations based only 
on these fixed sites, can be harder to justify over long periods of time, since in subsequent 
years when one is always going back to the same sites, the site selection basically 
changes to a fixed-site scheme. Over extended periods of time, it also becomes less likely 
that those originally selected sites remain representative of a changing target population, 
some parts of which had no chance for selection during a randomization done years 
earlier. 

If the primary goal is to determine one-time status rather then trend, selecting a 
new set of sites for each time period is best. However, if the primary goal is to determine 
trends and estimate the trend magnitude, it is much more efficient to revisit sites. Change 
between two time periods at any given site based on a revisit becomes equivalent to 
"pairing." At least some sites need to be revisited to determine trends, but also to get hints 
about whether or not the target population may be changing so drastically that it has 
essentially become a different target population. Adding to the overall complexity, in 
long term monitoring, realism demands consideration of changes in an optimal sample 
frame, and how such changes impact all conclusions. So how do we design monitoring so 
that we can make conclusions about both status and trends? To be able to say anything 

http://www.nature.nps.gov/im/units/swan/index.cfm?theme=monitoring_plan
http://www.nature.nps.gov/im/units/swan/Libraries/MonitorPlan/BennettA_2006_MPChapter4_070108.pdf
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about the current status, one must have sufficient sample sizes (usually a minimum of 25, 
to reduce the confidence intervals about proportions, and often also about means, to 
acceptably small magnitudes. To accomplish both goals, it is generally best to pool 
resources within a given field season and sample the population(s) of interest adequately 
and forgo re-sampling the population in consecutive field seasons. The re-sampling 
should include both re-visits (these essentially become index or fixed sites) as well as 
some new randomly selected sites (survey sites). Bringing in newly selected survey sites 
on a regular basis is helpful at assessing larger target populations, but can also complicate 
statistical analyses needed to determine long term trends (Andrew Merton and Scott 
Urquhart, Department of Statistics, CSU, Personal Communication, 2007).  

A common question in monitoring surveys is the use of temporary or permanent 
monitoring sites. For example, should permanent water quality sampling sites that are re-
measured over time, or temporary sampling sites that are re-randomized at each time be 
used? Many of the concerns are similar to those for repeated sampling designs discussed 
earlier. Permanent plots give better estimates of change over time because the extra plot-
to-plot variability caused by bringing in new plots each year is removed. However, the 
costs of establishing permanent plots are higher than for temporary sites, and the first 
randomization may lead to a selection of plots that have some strange characteristics. Of 
course, if the measurement process alters the sampling unit, new plots will have to be 
selected for each survey. A compromise solution is a rotating panel survey, where only a 
part of the sample is changed at each time point. In large, complex, long-term designs 
with multiple objectives, permanent plots are often the preferred solution since no survey 
design is optimal for all objectives and the objectives change over time (C. J. Schwarz. 
Studies of Uncontrolled Events, Chapter 3 In Sit, V. and B. Taylor (editors) 1998 
Statistical Methods for Adaptive Management Studies, B.C. Min. For., Res. Br., Victoria, 
BC, Land Manage. Handbook No. 42.). 
 The issue of how to calculate variance relative to sample sizes needed for trends 
analyses can be complex and discussed separately below.  

Why go to all the trouble to sort out the complex issues? Because this is long term 
monitoring, and we want to get it right for both status and for trends. 

Helpful references for those wanting to delve into GRTS and other spatially-
balanced variants, and complex timing issues pertinent to long term monitoring, include 
the following references: 

 
Stevens, D. L., Jr., and A. R. Olsen. 1999. Spatially restricted surveys over time 
for aquatic resources. Journal of Agricultural, Biological, and Environmental 
Statistics 4:415-428. 
 
Skalski, J. R. 1990. A design for long-term status and trends monitoring. Journal 
of Environmental Management 30:139-144. 
 
Kish, L. 1965. Survey Sampling. John Wiley & Sons, New York. 
 
Kish, L. 1986. Timing of surveys for public policy. Australian Journal of 
Statistics 28:1-12. 
 

http://www.for.gov.bc.ca/hfd/pubs/docs/lmh/lmh42.pdf%20or%20http:/science.nature.nps.gov/im/monitor/docs/BC_LMH42.pdf
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Kish, L. 1987. Statistical Design for Research. John Wiley & Sons, New York. 
 
Kish, L. 1988. Multipurpose sample designs. Survey Methodology 14:19-32. 
 
Binder, D. A. 1998. Longitudinal surveys: Why are these surveys different from 
all other surveys? Survey Methodology 24:101-108. 
 
Holt, D., and C. J. Skinner. 1989. Components of change in repeated surveys. 
International Statistical Review 57:1-18. 
 
Kasprzyk, D., D. Duncan, G. Kalton, and M. P. Singh. 1989. Panel Surveys. John 
Wiley & Sons, New York. 
 
Theobald D.M., Stevens D.L. White, D., Urquhart N.S., Olsen A.R., Norman J.B., 
2007. Using GIS to generate spatially balanced random survey designs for natural 
resource applications, Environmental Management 40 (1): 134-146  

GPRA and Proportions 
 
Proportions are potentially useful for GPRA and other management and reporting 

goals. One caution: Beware of (or at least look closer when encountering) small sample 
sizes when estimating proportions. Keep in mind that sample sizes should be 25-50 to 
estimate a proportion well and that any proportion estimated for sample sizes below 25 is 
a big red-flag (see EMAP explanation "Why a sample size of 50" and additional 
discussion on proportion size calculations below.  

A typical problem for NPS VS networks is that they often cannot afford (the 
optimally defendable for a proportion estimation) 50 aquatic samples per year in a GRTS 
design unless they use other generic VS funding to supplement water quality funding. 
Like many states, many networks do not want to put all their funding into a GRTS design 
but instead they often favor a hybrid design. Networks often desire to monitor at least a 
few targeted sites for long term continuity or to answer site-specific or resource-specific 
questions. Most networks also want to measure more than one aquatic variable and/or 
different variables at different types of sites. 

Will the Information be Useful to Management? 
 
A key question is what kinds of data would be of most interest to management? 

One reason for going to the trouble to think through the issues presented herein, including 
estimating minimum detectable differences and the need for at least some QC, is to avoid 
the following:  
 

Too often past monitoring has resulting in filling up file cabinets and/or databases 
with data that (even if one tried) could not readily be used for resource 
management or trend analyses purposes. 
 

http://science.nature.nps.gov/im/monitor/temp/TheobaldDM_etal_2007_GRITS_gis.pdf
http://science.nature.nps.gov/im/monitor/temp/TheobaldDM_etal_2007_GRITS_gis.pdf
http://www.epa.gov/nheerl/arm/surdesignfaqs.htm#manysamples
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Would a superintendent and Park resource managers be more interested in results 
from a sampled-population stretched over five years, or would that superintendent be 
more interested in how things conditions contrast between in wet years vs. dry years, cold 
years vs. hot years, or high flow times vs. low flow times. ? To protect the resource, 
superintendents may need to manage the resource differently in some types of years vs. 
others.  

Another related issue relates to internal data comparability. Are the data sets from 
longer time frames (five years for example), comparable enough to be combined into one 
sample? Over five years, bio-technicians and other personal (and equipment) are likely to 
change, resulting in measurement bias changes. One might then have two different kinds 
of results for the same sample (higher results when one staff member did the measuring, 
and lower results when a different staff member measured the same sample).  

Over longer periods of time, variation magnitude may also change for similar 
reasons. Both variation and summary statistics like averages would also be apt to change 
due to changes in the target population being sampled. These types of changes would be 
more apt to happen over a five year period than in one season, and would make it harder 
to defend that we logically have only “one sample” and not more. 

As one example, let's say that one can afford only 30 samples per year. Would it 
be better to take 10 samples at each of 3 parks during each of 3 consecutive years, or 
would it be better to take 30 samples at each park each year and rotate through the parks 
over each 3 year period. Likewise, would it be better to take 5 samples at each of 6 parks 
during each of 6 years, so that one could eventually get 30 samples per park, or would it 
be better to take 30 samples at each park each year and rotate through the parks over each 
6 year period?  

Answer: if the answer one is seeking is a proportion (% stream miles impaired, 
etc.) sample size needs to be 25-30 to result in a credible calculated proportion. 
Accordingly, it would generally be better to get 30 valid samples from one logical 
sampling unit (one park, or say small backcountry lakes at two similar parks) in one year. 
That way, one at least has a believable (the confidence interval about the proportion is 
small enough to be credible) proportion for any given year. Then 100 years later, if one is 
comparing proportions over the 100 year period (say comparing proportions from wet 
years to proportions from dry years), at least each proportion being used is a credible 
stand-alone entity. In other words, it would be better to have credible proportions for 
logically relatively homogenous strata or Parks each year. If proportions are to be 
estimated based on composite data from multiple years, try to keep the years down to no 
more than two or three, since anymore than that tends to stretch credibility more and 
more. In other words, if a two year period is chosen, there is a better chance that those 
two years would be similar (dry years say), then if the one was compositing information 
from 6 years (Andrew Merton, CSU, Statistics Department, Personal Communication, 
2007). 

States that require relatively few samples (for example, 1 per month, or 4 per year 
for metals, both for two years) for the purpose of gauging compliance with water quality 
standards may be exceptions. In that case, there are enough samples for regulatory 
compliance simply because the state says that is enough.  

Some federal programs also have regulatory-defined statistics that are required to 
be used by definition, regulation, or provided guidance. For example, in RCRA and 
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CERCLA assessments of contaminated soils (which would be analogous to sediments in 
the aquatic environments), upper confidence limits (UCLs) corresponding to 80-95% 
confidence are sometimes used not only for precautionary principle estimates of means 
(either parametric or nonparametric) but also for standard deviations or variances.  

Regardless of state or federal regulatory “minimum” requirements, NPS resource 
managers may recognize the need for more samples thoughtfully placed in space and 
time to be more fully representative of the full range of conditions in the environment. 
For example, given that many metals vary diurnally, seasonally, and spatially, are 4 metal 
samples per year in a stream or reach logically enough samples to ensure scientific 
credibility (for example, to represent the full range of conditions in a representative 
way)? Usually not, and resource managers are usually interested in the true conditions 
and not just regulatory status. Only when the true condition is known can resource 
management be done in an optimal way. 

Does It Still Make Sense? 
 
A potential complication encountered by other networks using GRTS or other 

probabilistic designs, has been that lumping values from different years together to 
eventually get a big enough sample size may not always be logically defendable. On one 
hand, lumping five years of data might help cover a fuller range of conditions better than 
single years.  

On the other hand, very small sample sizes (always problematic or at least 
worrisome in statistics) can be a fatal flaw, especially when combined with inattention to 
timing and spatial issues. If one only takes 30 samples from a very large area (such as a 
whole park or whole network) over one five year period, could one stand up in court (or 
even in front of a superintendent) and say with a straight face that the full range of 
conditions had likely been captured with our 30 samples? Although the fact that samples 
had been sampled randomly is perhaps even more important than sample size, having a 
reasonably large sample (that is representative of the full range of conditions) is also 
crucially important. 

In the above example of 30 samples, the resulting proportion based on five years 
of lumped data may not be fully or optimally representative of the target population one 
was trying to protect. What would the target population or sampled population be? 
Whatever is chosen should pass last minute reality-checks of logic, defend-ability, 
explain-ability (keep it simple is optimal there), and common sense.  

In the highly variable universe of water quality, it may be hard to logically defend 
the notion that five annual samples, of sample size six each (from a very large area) is in 
fact “one sample” and the right (or optimal) sample to estimate a proportion or average 
that would be truly representative of the named target population. Due to changed 
conditions, it might be easier to defend that there are in fact, five valid samples (not one). 
In worst case scenarios, GRTS plus excessively small sample sizes and inattention to 
timing and important variability-reducing response design details (such as sampling low 
gradient riffles only or snags only, or only in short “index” time periods) may produce 
data that is so variable and so anecdotal (small sample sizes) that it may not useful for 
many (if any) purposes. This is one key reason why so much water quality data collected 
in the past has not been useful for management purposes.  
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A related potential complication is that composite sample power analyses must be 
handled differently than normal. This is not a fatal flaw by itself, but must be dealt with 
in defendable ways. 

An important reason past data has too often not been useful relates to trend 
detectability. Five year averages estimated from extremely variable data might make it 
difficult to detect even big changes from one five year period to the next, or to detect 
longer term trends. Again, our monitoring design should produce data that is useful for 
resource management decisions and useful to answer stated questions.  

Timeliness is another issue to consider. Resource managers may not consider 
conclusions that they get only once every five years to be timely enough. Superintendents 
have sometimes wanted to detect a change of less than 50% over one year. For certain 
rare or important biological resources, superintendents have sometimes not wanted to 
lose 50% without knowing it after one year, let alone after five years. This may be even 
more worrisome if the estimate is questionable due to small sample sizes.   

Reporting data and QA/QC summaries (but not conclusions on trends or water 
quality exceedances) annually is necessary and helps. However, if after 5 years, 
meaningful summary statistics (means, medians, proportions, water quality standard 
exceedances, % meeting acceptable condition index scores, etc.) cannot be calculated, 
that would typically be a problem. Likewise, if after 10-20 years, if even true and 
substantial trends could not be detected because of study design flaws (often including 
inadequate sample sizes), resource managers and other data users will probably not be 
well served. Species which are legally protected or even locally rare would be difficult to 
manage based on conclusions once every 5 years. Again, they might disappear between 
conclusions. In such special cases, there may be missed opportunities for management, 
and resource managers may have very little warning about declining populations. With 
shorter intervals of monitoring, and credible sample sizes, there is a better probability of 
detecting trends or bad conditions in time to develop and implement management 
strategies to avert losses. 

After Revisions, Go Back and Optimize Related Sections 
 
The adaptive management and iterative way that monitoring planning should 

proceed is so important, that it is mentioned again. If Chapter 4 of the central monitoring 
plan discussed several different options for different monitoring designs and discussed 
factors that nothing in the protocol is designed to address, these different tracks need not 
be given substantial discussions in the protocol narrative. Instead of lengthy discussions 
of discarded or minor tracks in the protocol narrative, just provide a table with 
summarizes the option chosen (for example a probabilistic design to answer questions 
requiring random designs, or a sentinel/historical site design to answer questions that 
infer to trends at that one site only). If there are ancillary research questions of interest 
the network, they could be mentioned (related to potential future funding) but they need 
not be given much space in the protocol narrative. It is important to clearly separate 
sidelight or discarded strategies or questions rather than leaving the impression that the 
monitoring design, protocol, and SOPs chosen can answer more questions than it can. In 
other words, the protocol narratives should be focused and all related section sections 
(Chapter 4 and the SOPs) should be consistent with each other and with the protocol 
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narrative as iterative revisions are made. Readers will note that iterative changes are a 
consistent theme in this guidance, not only in basic monitoring designs, protocol 
narratives, and representativeness, but also in the steps covered next: 

 
QUALITY CONTROL (QC): 
 
 We have already explained that QA relates to a system of steps 
(including some qualitative ones) that are done to ensure quality in an overall 
systematic planning and project management process. For contrast, QC 
includes quantitative (measurable) performance characteristics for data 
quality indicators like measurement precision, measurement bias, 
measurement sensitivity, and (for chemical measures only) blank control 
bias. 
 Accordingly, typical definitions of QC usually emphasize measurable 
Performance-Based Measurement Systems (PBMS). Such PBMS QC basics usually 
include performance and data acceptance criteria (EPA. 2006. Guidance for the data 
quality objectives process. EPA QA/G-4, EPA/240/B-06/001).   
 The next few sections also cover Completeness and Comparability. In 
documents of other agencies, these two are sometimes covered in QA 
sections, sometimes in QC sections, depending on the authoring agency and 
specific document. But all seem to agree that sensitivity, precision, and bias 
are QC topics virtually always accompanied by quantitative measurement 
quality objectives—MQOs. EPA has used the related-phrase data quality 
indicators (DQIs) in the following manner:  
 

EPA’s 2002 QA/QC document (G-5) includes DQI descriptions for include precision, 
bias, accuracy, representativeness, comparability, completeness, and sensitivity. The 
document also makes it clear that the word accuracy should only be used for controlling 
precision and bias in combination, usually based on reference materials and/or spikes 
(with larger samples sizes than two, since two would give one only one-way bias and not 
a good long term estimate of accuracy, Table D-3, Appendix D, In EPA. 2002, 
Guidance for Quality Assurance Project Plans (QA/G-5, EPA/240/R-02/009 
December 2002). 
 
EPA has clarified that “Quantitative DQIs” include precision, bias, and sensitivity, 
whereas “Qualitative DQIs” include representativeness, comparability, and completeness 
(EPA 2000. Introduction to Data Quality Indicators). EPA has also clarified that that 
completeness is a combination of quantitative and qualitative control (EPA. 1998. EPA 
Guidance For Quality Assurance Project Plans). 

Why Document Quality Control? 
 
The need for a separate QA/QC SOP was first introduced above in Chapter 5, 

since QC documentation details are often considered part of methods. However, at this 
point in the progression of topics that need to be covered in protocols and SOPs, we are 
turning out attention away from general qualitative QA topics and towards more specific 
and quantitative QC topics, so more detail on each QC topic is provided below. 

http://www.epa.gov/quality/qs-docs/g4-final.pdf
http://www.epa.gov/quality/qs-docs/g4-final.pdf
http://www.epa.gov/quality/qs-docs/g5-final.pdf
http://www.epa.gov/quality/qs-docs/g5-final.pdf
http://www.epa.gov/quality/trcourse.html#intro_dqi
http://www.cluin.org/conf/tio/sysplan/epaqag5.pdf
http://www.cluin.org/conf/tio/sysplan/epaqag5.pdf
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In general, there is increasing consensus that point estimates are not optimal for 
most purposes, and in fact are no longer considered acceptable for many purposes. Just as 
it is now considered to be good form (and more scientifically defendable) to express 
uncertainty on average values with a confidence interval rather than just reporting a mean 
value as a point estimate, so it is now considered necessary to express uncertainty about 
each single data point. 

The NPS WRD agrees with the NIST and ISO national and worldwide scientific 
consensus (as explained for the US by NIST, see N. Taylor and C. E. Kuyatt. 1994. 
Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results 
NIST Publication TN 1297, that: 

 
1. No (single) measurement is perfect. Each is an approximation, and 
2. Individual measurement data points are not complete unless accompanied by a 

statement about the uncertainty of that approximation. 
 
QC samples allow one to estimate the amount of uncertainty about each data 

point. As will be explained in more detail, uncontrolled measurement processes, which 
typically are not accompanied by any QC checks, are no longer acceptable. Just as 
confidence intervals express the uncertainty about a mean of many data points, an AMS 
interval can express uncertainty around each single data point.   

One difference between Quality Assurance – QA, and Quality Control—QC, is 
QA tends to be controlled qualitatively (translates in Vital Signs Monitoring to protocol 
narratives and in other parts of the overall monitoring plan), whereas QC tends to be 
documented and controlled quantitatively in QC SOPs. QC helps put quantitative 
boundaries on how imperfect the measurement process (relevant to each single data 
point) is allowed to be.  

Thus, if a reading on a pH meter is 7.0, is it really best thought of as 7.0 + 0.2 
(which is probably fine or at least within project objectives) or is our confidence in the 
reading so low that it should really be honestly thought of 7.0 + 3.0 (this much 
uncertainty would typically not be  acceptable). And if the reading at one site is 7.0 and 
the reading at another site is 7.2, do we believe that the change is really reflective of the 
environment being measured in the two places really being different, or is just a 
reflection that our pH meter is not measuring very accurately, so that 7.0 is not really 
different than 7.2? Likewise, if one biological technician estimates “percent 
embeddedness of cobbles” at a site as 20%, and another technician estimates the % at the 
exact same spot as 40%, we immediately suspect that measurement observer bias is not 
being well controlled. 

Without such controls, we have no way to estimate how badly the measurement 
process is performing. Measurement uncertainty could be extremely large (or suddenly 
change) and we wouldn’t even know it.  

In modern science, QC performance results help us document that the 
measurement process has been kept “in control” within reasonably small limits. Before 
explaining this further, we will first answer the following question: 
 

Why do we need to quantitatively control the measurement process for 
measurement sensitivity, measurement precision, and measurement bias?  

http://www.nature.nps.gov/water/
http://physics.nist.gov/
http://www.iso.org/iso/home.htm
http://physics.nist.gov/Document/tn1297.pdf
http://physics.nist.gov/Document/tn1297.pdf
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The short answer is that most states and regulatory agencies require us to do so as 

part of a required quality assurance project plan (QAPP). Some states also have credible 
data laws that address these issues. Many regulatory processes and even many modern 
databases will not accept data without QC and other metadata documentation. 

Even if no outside entity is “making us” do so, there are logical reasons why we 
should control and document the performance of QC data quality indicators: 
 

Scientific Credibility: The scientific community has known since the 1930’s that 
measurement processes need to be quantitatively controlled for both precision and 
bias to produce credible data (Newman, M.C. 1995. Quantitative Methods in 
Aquatic Ecotoxicology, Lewis Publishers, Boca Raton, FL., p. 282). 
Reproducibility is not only a QC basic, it is a “sound science” basic. Unless one 
documents measurement performance characteristics, it will be very difficult for 
another party to reproduce the result independently. So documenting QC controls 
and results is simply part of documenting sound science in today’s world. 
Although one need not go overboard with QC, one needs “To do something!” to 
maintain QC (doing nothing to control QC is no longer a viable option). 
 
Legal credibility: For similar reasons, without QC performance documentation, it 
would be difficult to defend our data if attacked on the basis of not only scientific 
credibility, but also legal credibility 
 
Multipurpose Needs: It is expensive to collect data, so to the extent possible, 
data collected should be credible for multiple purposes and to multiple agencies 
(many of whom require QC documentation). This tends to be particularly relevant 
to regulatory goals (which usually require QC) and associated GPRA goals.  

 
Long Term Usefulness: QC performance results help insure that the data is 
useful for a longer time period, including use in estimating trends. We are 
planning long-term monitoring, and controlling and documenting QC indicators 
gives our data a better chance to be considered credible in future years. In future 
years, we would not want our data thrown out because someone had then decided 
that all data without full quality control documentation was unacceptable and 
would not be used. This is already happening more and more often, and the 
tendency to do so can be expected to become more common. If our data cannot be 
used for its intended long term purposes, our monitoring funding will have been 
wasted, and/or budget cuts in monitoring would be easier to justify. 

 
Method Change or True Trend Change? In long term monitoring, method, 
SOP, and staff changes are inevitable. Documenting changes in measurement 
performance after such changes is therefore even more important than for short 
term projects. Documenting QC performance of the old versus the newer methods 
helps one determine whether or not a change in values was the result of a true 
change in the environment or whether it was the result of a change in the 
measurement process. Thus, good QC documentation of measurement changes 
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that bias scores upwards or downwards makes finding long term trends in a 
defendable way possible. For more details, see Section XII (Include a Cumulative 
Measurement Bias SOP) herein). 

 
Data Interpretation: We need QC results to be able to interpret data in an 
optimal and common-sense manner. For example, we need low-level 
measurement sensitivity results to understand whether or not the analyte is present 
and how big of a measured change is believable as a real change (rather than a 
random error in the measurement process). Poor precision is normal when getting 
close to the low-detection-limits of measurement sensitivity (usually within 2-3 
times the MDL or AMS sensitivity limits). In field biology estimates if bird or 
amphibian calls are weak, the “signal” is not strong, the noise tends to be getting 
close to being as strong, and normal signal to noise ratio theory becomes 
applicable. However, if we don’t know what the detection limits or other 
measurement sensitivity limits are, it is much harder to interpret the meaning of 
the precision QC results. 

 
Adaptive Improvements in Monitoring: Programs that have instituted improved 
quality control over the years see their QC scores improving, even for field 
measures (USGS 1998. Summary of the U.S. Geological Survey National Field 
Quality Assurance Program from 1979 through 1997). The corollary advantage to 
agencies using these kinds of checks is that if QC scores suddenly go downhill, 
the agency would know to make corrections until the situation was corrected. If 
there were no checks, an agency would not even know the measurement process 
had deteriorated. 

 
Old style Peer Review is not enough: For those who might still believe that 
journal-style post-project peer review is all that is needed, remember why that 
solution (although certainly one helpful step) is not complete by itself. Among the 
reasons: 1) it is too late to change the design or outcome, 2) scientific journals that 
have studied their own peer review processes have found glaring inadequacies, 3) 
many projects that have been published in peer reviewed journal articles (unlike 
many government grey literature documents) have no documented QA/QC at all. 
A 2006 introduction to these problems is in the background introduction to the 
First International Symposium on Knowledge Communication and Peer 
Reviewing. A similar 2007 summary of some of these issues continues with these 
same themes, including why typical post-project does not work well and is 
typically based on false assumptions. Among the references prominently cited in 
both these summaries were: 
 

Chubin, D., and E. Hackett. 1990. Peerless Science: Peer Review and U.S. 
Science Policy. Albany, N.Y.: State University of New York Press. 
 
D. Kaplin. 1995. How to Fix Peer Review, 1995. The Scientist, Vol. 19, 
Issue 1, Jun. 6. 
 

http://fl.water.usgs.gov/Abstracts/ofr98_392_stanley.html
http://fl.water.usgs.gov/Abstracts/ofr98_392_stanley.html
http://web.archive.org/web/20061208100159/www.info-cybernetics.org/KCPR2006/website/default.asp
http://web.archive.org/web/20061208100159/www.info-cybernetics.org/KCPR2006/website/default.asp
http://www.info-cyber.org/kcpr2007/website/default.asp?vc=16
http://www.amazon.co.uk/Peerless-Science-U-S-Science-Technology-Society/dp/0791403106
http://www.amazon.co.uk/Peerless-Science-U-S-Science-Technology-Society/dp/0791403106
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J. Ziman. 1982. Bias, incompetence, or bad management? The Behavioral 
and Brain Sciences, 5 (2), pp. 245-246. 
 

Internal Requirements: QC documentation is required by NPS WRD, the 
generic VS checklist, needed to fully comply with spirit of the DOI information 
quality guidelines, and needed for input fields in modern data bases such as 
STORET or NPSTORET. NPS (WRD) requires that all water quality data 
collected by the Vital Signs aquatic monitoring be put into STORET, and 
STORET metadata fields call for QC performance information).  

Include a QA/QC SOP and Comparison Table for QC Topics 
 

Each protocol narrative should include a QA/QC SOP that documents what will 
be done to control and estimate the magnitude of: 

 
Measurement Sensitivity (Usually as MDLs or AMS). 
 
Measurement Precision (Usually as RPDs) 
 
Measurement Systematic Error/Bias (Usually as PDs) 

 
Measurement Blank Control Bias (If present above MDL magnitudes, this is 
another contributor to total measurement bias). Blank control is usually handled 
with separate blank QC samples in chemical lab analyses, see details below). 
 
Completeness Goals: Although this relates to a QA topic at the monitoring design 
level rather than a strict QC goal, since the goal is quantitative, it may also be 
helpful to include the completeness objectives as part of a QA/QC summary table. 
This helps put project quantitative goals all in one place. 
 
Generally QC Measurement Quality Objectives and Frequency of QC samples for 

each of the above should be no less stringent than requirements of the State. If data will 
be compared to other large Federal Data Sets (USGS NAWQA, EPA CERCLA or 
EMAP, FWS, NOAA, etc.) then blank control requirements should also be no less 
stringent than the other Federal Program whose data will be used for comparison with 
NPS results. 

A summary table which compares the basics about QC data quality indicators on 
the scale of each single measurement is provided here. Again, each of the following 
topics is covered in much more complete detail in sections that follow, but when later 
reading those individual sections, readers may want to refer back to the following table 
when thinking through the differences between the various QC indicators, and compare 
their requirements with the following before finalizing QA/QC SOP details.  

The following tables are relevant to chemical and biological measures. However, 
some (MDLs and Blank control) are most relevant to low level chemical analyses. For 
many biological or ecological measures, the minimum QC indicators that need to be 

http://www.nature.nps.gov/water/wobstaff.cfm
http://science.nature.nps.gov/im/monitor/docs/MonitoringPlanChecklist.doc
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controlled would typically be at least three: precision, bias, and sensitivity (often as 
AMS). 

 
QC Metric and QC Measurement Quality Indicators: Comparison of Indicator Basics 
 
Measurement Sensitivity (Relevant to Each Single Data Point) 
 
Typical QC control for sensitivity is done in one of the following ways explained in the 
table below: 1) MDLs and MLs, this couplet is usually used for chemical analyses when 
very low-signal strength is sometimes encountered, or 2) LT-MDLs and LRLs (Only 
when USGS Labs are Used), or 3) AMS or AMS+ (used for field measures and whenever 
low-signal strengths are never encountered). Each of these is summarized below: 
 
 
Purpose 
 

Metric 
Acronym 
 

Metric + Brief 
STORET Note 
 

Minimum 
Frequency of 
Reporting 
 

Description Sample Size Equation 

EPA, State, 
and some 
USGS labs 
Low Level 
Sensitivity As 
Detection 
Limits 
(Usually Lab) 

MDL: for 
Control of 
Very Low 
Level 
Sensitivity
. This is 
the 
standard 
MDL 

Method Detection 
Level. Put MDL in 
the detection limit 
field. If the result is 
<MDL, STORET 
Detection Condition 
is “Not Detected.” 
 

1/year or when 
methods change 

Lowest value that 
can be 
differentiated from 
zero, the lower 
Semi-Quantitative 
Type of Detection 
Limit, Based on 
Short Term Data 

Seven Obtain MDL from 
laboratory, For 
field work 
calculate as 
3.134*SD of a 
blank or very low 
signal solution 

USGS  
NWQL Low 
Level 
Sensitivity As 
Detection 
Limits 
(Usually Lab) 

LT-MDL: 
NWQL 
Control of 
Very Low 
Level 
Sensitivity 

Long Term Method 
detection level 
USGS Long-Term 
Version of MDL 

Every Few 
Years 

Lowest value that 
can be 
differentiated from 
zero, but based on  
Long Term Data 

High, Based on 
Multi-year data,  
Get the LT-MDL 
from USGS 

Obtain from 
USGS laboratory 

EPA and State 
Quantitative 
Sensitivity As 
Detection 
Limits 
(Usually Lab) 

ML: 
Higher 
than This, 
Values are 
Quantitati
ve 

Minimum level of 
quantitation, In 
STORET, record at 
LQL 

1/year or when 
methods change 

Lowest 
Quantitative Value 
Above the ML 
values are 
quantitative 

Based on Single  
MDL 

3.18 * (MDL) 

STORET 
synonym for 
ML 

LQL Lower Quantitation 
Limit = STORET 
Synonym for ML 

1/year or when 
methods change 

Lowest 
Quantitative 
Value, “ 

Based on Single  
MDL 

3.18 * (MDL) 

USGS 
Quantitative 
Sensitivity As 
Detection 
Limits 
(Usually Lab) 

LRL Long term reporting 
level (Unique to 
USGS laboratory) 

Every few years A USGS  
alternative to the 
ML, based on long 
term QC data and 
LT-MDLs  

Based on Single  
LT-MDL, Get the 
LRL from USGS 

Obtain from 
USGS laboratory, 
2 *(LT-MDL) 

Sensitivity 
(Usually 
Field, or 
Whenever 
MDL is NA) 

AMS: 
Lowest 
Change 
Possibly 
Real 

Alternative 
Measurement 
Sensitivity, For + 
STORET “analytical 
procedure 
description” field 

Beginning and 
end of field 
seasons 

Determines 
instrument noise 
in both directions 
(up or down). 
How big of a 
change is real? 

7 measurements 
from the same 
field sample 

3.708*SD, where 
SD = Sample 
Standard 
Deviation 

AMS+ 
(Usually 
Field, or 
Whenever 
MDL is NA) 

AMS+: 
Total 
Variability 
of Close 
Replicates 

Alternative 
Measurement 
Sensitivity+, Record 
In STORET as 
Stated Above if no 
other form of AMS 
is reported 

Beginning and 
end of field 
seasons 

Includes 
instrument noise 
and natural 
heterogeneity 

7 measurements of 
nearby but not 
identical samples, 
in-situ for sondes 
only 

SD * 3.708 
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Measurement Precision (Lack of Perfect Precision, Relevant to Each Single Data 
Point) 
 
At minimum, measurement precision is typically controlled either with QC duplicate 
measurement of a single sample for Precision or with measurement with two nearby 
samples for precision+. These two are contrasted below: 
 
Precision (Lab 
and Field) 

RPD: 
QC  
Precision 
Control  

Relative Percent 
Difference. In 
STORET include 
both values RPD 
was based on and 
optionally include 
RPD as a comment. 

1 for every 20 
samples, lab or 
field. In the 
field, also used 
for every core 
parameter 
calibration 

Variability of 
repeated measures 
(precision) 

1 sample but two 
values (1 
Comparison of 
two values 
measured on one 
single sample) 

RPD = 

( ) 100
/2S  S

S - S

21

21 ×⎥
⎦

⎤
⎢
⎣

⎡
+

 

Precision+ 
(Usually for 
Field 
Measurements 
Only) 

RPD: 
QC  
Precision+ 
Control  

Relative Percent 
Difference: Include 
in STORET as 
suggested above in 
no Other Form of 
Precision is Reported 

1 for every 20 
samples, lab or 
field. Done 
Instead of 
Precision or in 
Addition to 
Precision 

Variability of 
repeated measures 
(precision+) + = 
potentially some 
additional true 
variability (two 
samples not one) 

2 (1 Comparison 
of two values,  
measurements of 
two samples 
collected in close 
proximity but not 
one sample) 

RPD = 

( ) 100
/2S  S

S - S

21

21 ×⎥
⎦

⎤
⎢
⎣

⎡
+

 

 
Measurement Bias (At the Scale of Each Single Data Point) 
 
At minimum, measurement bias is typically controlled with a blind measurement of a 
sample when the person doing the measurement does not know the right answer when 
measuring. In the case of chemical lab analysis, another form of bias is controlled with 
blank QC samples. 
 
Bias (Lab and 
Field) 

PD: 
QC Bias 
Control 

Percent difference: 
In STORET include 
both values PD was 
based on and 
optionally include 
PD as a comment, 
Choose Reference 
Sample or Field 
Spike 

QC control 1 for 
every 20 
samples, lab or 
field. In the 
field, also used 
for every core 
parameter 
calibration, 

Difference 
Between 
Measured Result 
and Expected 
Result Based on a 
Reference Sample 
Standard or a 
Spike  

2 (1 Comparison 
of two values, one 
of which is a 
known correct (or 
expected) value 
and the other is the 
measurement 
result 

PD = [ Y - X) / X] 
* 100, where X is 
the known 
(usually “correct” 
or “expected”) or 
spiked amount, 
and Y is the 
measured 
concentration. 

Blank Control 
Bias (Usually 
for Lab 
Measures 
Only) 

PD: 
QC Blank  
Control 
Bias 

Percent difference, 
But No Blank 
Contamination 
Positive Bias is 
Reported Unless 
The Value Measured 
is Higher than the 
MDL. Record both 
measured value and 
MDL in STORET 

No Less 
Stringent than 
the State, often 
QC blank 
sample once 
every 20 lab 
samples or once 
per field site 

Difference 
Between 
Measurement 
Result and Blank 
Sample Expected 
Result (Usually 
No Greater than 
the MDL 

2 (1 Comparison 
of two values, one 
of which is the 
expected value (no 
greater than the 
MDL) and the 
other of which is a 
measurement of 
the blank sample. 

PD = [ Y - X) / X] 
* 100, where X is 
the MDL and Y is 
the measured 
concentration. 

 
 NPS Vital Networks may want to copy parts (or all) of the tables above into the 
QA/QC SOP. 

Each of the above has a STORET counterpart. See table entitled “QC 
Measurement Quality Indicators and STORET/NPSTORET Treatment” in separate 
section in the last chapter herein (Include STORET Details in a Data Management SOP). 

If additional detail on any of the topics listed above is located anywhere other 
than in the QA/QC SOP, a summary of what will be done to control each of the issues 
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listed above should be included in the QA/QC SOP. Point-to hyperlinks in the SOP 
should make it clear to the reader exactly where the other detail may be found. For 
example, if representativeness and target populations are fully explained in the protocol 
narrative or in the chapter on sampling design in the plan, then the representativeness 
section of the QA/QC SOP should clearly “point to” the section where the subject is fully 
covered. Details related to individual sites and individual measurements or parameters 
(“characteristics” in STORET terminology) should usually be fully explained in the 
representativeness section of the QA/QC SOP. 

A good example of a good QA/QC SOP is the SOP 7 (QAPP) of the Northern 
Colorado Plateau Network (NCPN) attached to the NCPN Freshwater Protocol. 
 To obtain data comparability, it is OK and even desirable to use well established 
QA/QC procedures of another federal agency (USGS, NOAA, EPA, NAWQA, or 
EMAP) or a state agency. In the QA/QC SOP, list the source-agency, measurement 
quality objectives, and SOP details for sensitivity/detection limits, precision, systematic 
error/bias and blank control (the latter for chemical labs only). The SOP source-agency 
(EPA, EMAP, USGS, etc.) may change their SOPs as time goes along, and we need to 
have solid documentation of the methods we used at the start. For subsequent method 
changes, (see Include a Cumulative Bias SOP section below). 

In some cases, the same QC measurement quality objective  (MQO) can be given 
for several parameters in a suite of vital signs included in one protocol. For example, if a 
network decided to use EPA marine EMAP QC SOPs to obtain maximum data 
comparability with EPA and state marine EMAP data, they could specify a precision 
repeatability MQO of 10% for several parameters to be measured in the field, including 
pH, temperature, DO, specific conductance, salinity depth, light transmittance (PAR), 
turbidity, and Secchi depth. The EMAP methods are a good source of MQOs for 
precision, bias, for field probe measures (EPA. 2001. National Coastal Assessment 
Quality Assurance Project Plan 2001-2004. EPA/620/R-01/002). 

However, in many other cases MQOs will be different for different parameters 
and can simply be listed in a QC SOP table. A protocol for water column parameters 
measured in the field would typically have different measurement quality objectives than 
a protocol for nutrient parameters measured in the lab. However, in both cases, a table in 
a separate QC SOP in each protocol could list the MQOs for each applicable parameter. 
 Be careful with QA/QC terminology. Words and phrases such as 
representativeness, sensitivity, detection limits, accuracy, precision, repeatability, 
reproducibility, error, systematic error/bias, and uncertainty, have been used for different 
concepts by different groups. The confusion in water quality and contaminants QA/QC 
terminology has been so widespread that it brings to mind a “Tower of Babel” (everyone 
speaking different languages, no one understanding each other) scale of confusion. Some 
care has been taken herein (and in more detail in Part B) to explain the right terminology 
and to standardize on National Institute of Standards and Technology (NIST) and 
International Organization for Standardization (ISO) terminology wherever possible. 

If the QA/QC of another agency is not adopted, or if the QC details come from 
multiple sources or are brand new, before completing the QA/QC SOP, a final check 
should be made to make sure that the measurement process will be controlled in some 
documented and defendable manner. The networks need to document what will be done 
for each of the issues listed below (doing nothing is not an option), but the networks need 

ftp://ftp.den.nps.gov/incoming/BRCA/Formatted/SOP_07_QAPP_all_units_0407.doc
ftp://ftp.den.nps.gov/incoming/BRCA/Formatted/SOP_00_NCPN_Protocol_Narrative_0407.doc
http://www.epa.gov/emap/nca/html/docs/c2k_qapp.pdf
http://www.epa.gov/emap/nca/html/docs/c2k_qapp.pdf
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://physics.nist.gov/
http://www.iso.org/iso/home.htm
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not “go overboard.” However, at minimum, reviewers will be looking for common-sense 
documentation related to each of the following QA/QC basics:  

The reason the word “measurement” proceeds each of the QC data quality 
indicators (precision, bias, sensitivity) discussed above is that what the QA/QC SOP 
should cover is controlling the measurement process on the level of each single 
measurement. For contrast, on the broader (overall monitoring design) scale of 
multiple measurements, related topics are covered in the protocol narrative rather than 
the QA/QC SOP. Examples of analogous but different-scale issues that would be covered 
in Protocol Narrative rather than the QA/QC SOP include: 

 
Monitoring Design Sensitivity (Expressed as Minimum Detectable Differences or 
Minimum Detectable Effect Sizes). 

 
Monitoring Design Precision (Which Includes Contributors to Total Variability 
Not only from a Lack of Perfect Measurement Precision but also From True 
Heterogeneity of the Variables Being Measured and a Lack of Perfect 
Representativeness of the Samples Measured Compared to the Underlying Target 
Population. This is often expressed as a standard deviation. 

 
Monitoring Design Systematic Error/Bias (Measurement Scale Bias Plus any Bias 
Contributed by an Imperfect Monitoring Design Tending to Result in Consistently 
High or Low Estimates of the Summary Statistics (Means, Medians, Standard 
Deviations, Quartiles, etc.), When Compared to True Values of the Underlying 
Target Population). This is often expressed as percent difference. 
 
Monitoring Design Completeness (see next section). 

 
What will be done to control the Monitoring-Design-Scale topics discussed just 

may be covered in the protocol narrative rather than in a QA/QC SOP. However, 
summary materials may be presented in tables. 
 
VI. Completeness, Sample Sizes, Statistics, and Detection Probabilities vs. Desired 
Conditions 

 
Completeness is usually considered a QC topic, but to assure completeness, one 

must first consider sample sizes, overall monitoring or survey plan, detection 
probabilities, desired conditions and some other QA factors that are usually first 
mentioned in the central monitoring plan as part of the overall monitoring design. So 
although completeness goals are quantitative, they are different and arrived at differently 
than QC goals for precision, bias, and sensitivity, all of which are at the QC level of 
pertaining to the quality of each individual data point. Completeness, on the other hand 
relates to multiple data points to be collected with the overall monitoring design. 

In aquatic Vital Signs Monitoring, Data completeness goals are typically given as 
percentages in tables in the QA/QC SOP or QAPP and are developed by first estimating 
required sample sizes. Although written for aquatic and water quality monitoring, a 



 60

statistician who reviewed the following section reminded us that most of these steps are 
generic and would also apply to terrestrial monitoring. 

Determining required sample sizes and attendant completeness goals should be 
done in a stepwise manner, considering the following in a more detailed and quantitative 
way than has been done in earlier planning phases: 

 
1. Refine (provide more time and space detail) objectives and questions 
2. Identify desired conditions qualitatively. 
3. Identify resource-collapse or other thresholds (such as water quality standards 

or no-effect levels) 
4. Identify existing conditions. 
5. Develop safety margin between existing conditions and threshold magnitude. 
6. Document variability in time and space.  
7. Refine target population details. 
8. How big of a difference or change do we need to be able to detect? 
9. What initial statistics will be used? 
10. Choose desired detection probability/statistical power (1-beta). 
11. Choose statistical significance level (alpha).  
12. Use simple calculators to make initial estimates of required sample sizes. 
13. Throw out measures or strata where excess variability will prevent detecting a 

trend or a difference of concern within budget. 
14. Optimize monitoring plan details for affordability and logic.  
15. Draft initial sample sizes and optimized monitoring design. 
16. Finalize sample sizes and design with an applied environmental statistician. 
17. Estimate the % of samples that will fail (for example 10%). 
18. Increase the planned sample sizes accordingly. 
19. Put completeness goals in a MQO table in the QA/QC SOP. 

 
The first three above are typically covered in varying degrees of detail in the 

central monitoring plan. Some have also previously been introduced herein (above) in the 
section on Objectives and Questions. However, when developing the fine details of the 
monitoring design, sample sizes, and statistics, several of these inter-related issues should 
be reconsidered in a more thorough and quantitative way and documented in more detail 
in each protocol narrative and in relevant SOPs. The goal would be to make sure they all 
line up and make sense when considered together. Defining the first two steps in as much 
time and space detail as possible is helpful when moving to the more quantitative steps 
(3-19). 

When faced with a 19 step process (just above), why not just go to a professional 
statistician to start with (or maybe starting along about step 4)? Great idea, if the network 
can afford it. However, many of the steps are decisions to be made by the park or 
network, not the statistician, and would in fact be input to bring to the statistician. All of 
the steps before 16, except perhaps 9 and 12, should be done by NPS staff, often with the 
help of the network quantitative ecologists. Even if performed by a statistician, the 
statistician would need considerable input from the NPS in going through the steps. 
Furthermore, bringing Vital Sign network quantitative ecologists up to a certain 
minimum level of understanding is a good goal and one that would help prevent some 
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past disconnects between the statistician’s advice (often in Chapter 4 of the central 
monitoring plan and mistakes made later by networks in protocol and SOP development 
after the monitoring staff stopped talking to the statisticians. 

Fully informed quantitative ecologists can help park management refine the steps 
above (in developing sample sizes, minimum detectable difference goals, power goals, 
etc. in an adaptive management way (see Statistical Methods for Adaptive Management 
Studies). For example, after step 15 above, it may become clear to all that initial 
decisions made for steps 1, 5, 6, 8, and 11 have to be adjusted for the design to make 
sense and be within budget.  

In situations where: organisms are clustered or clusters are geographically rare; 
moving, or are potentially newly establishing invasive species, then adaptive sampling 
can be done to find and then more intensively sample locations where rare species live or 
rare conditions can be found. This is a different topic. Sample sizes needed, and how to 
estimate variance tends to be done in different ways. Adaptive sampling issues can be 
complex (USGS 2002. Sampling Designs for Rare Species and Populations). Software 
Downloads for Adaptive Sampling  are available from USGS. 

There are also cases where parks or networks might want to monitor rare 
charismatic species or rare resources with legal mandates. However, in many other cases 
rare resources are excluded from long term monitoring for various practical reasons. 
Among the factors to consider: 1) the rare resource might disappear during 100 year 
monitoring, 2) the resource might be impacted by monitoring repeatedly, 3) logistical and 
other costs can be high, especially when trying to sample rare resources of unknown 
distributions using multiple-step adaptive sampling, and 4) often there is not enough 
power to make any kind of statistically powerful claim about the resource in decline until 
the resource is already extirpated or otherwise in a difficult-to-recover situation. 

No matter what type of sampling is planned, determining required sample sizes 
and data completeness goals admittedly takes a bit of effort. However, is especially 
important for long term monitoring and failing to carefully plan for adequate sample sizes 
has all too frequently resulted in aquatic monitoring that has produced data that has not 
been useful for management decisions. Too often raw data has never made the transition 
to useful information (“Ward, R.C., Loftis, J.C., and G.B. McBride. 1986. The "data rich 
but information poor" syndrome in water quality monitoring. Environmental 
Management 10:291-297).  

 
Outliers:  

 
If sample size is large enough (usually 25 or more), one way to identify 
“potentially wrong” outliers is to calculate the 5th and 95th percentiles 
(some use 10th and 90th percentiles) and then look closer at those values 
that fall outside of the those limits. Outliers tend to strongly influence 
means and standard deviations.  
 
If the outliers seem clearly wrong (like impossible pH values of 85 or -
100), they can be discarded, but be careful not to discard values without 
strong evidence that they are clearly wrong, since often extreme values 
can be right and in fact the most important ones (Helsel and Hirsch text 

http://science.nature.nps.gov/im/monitor/docs/BC_LMH42.pdf
http://science.nature.nps.gov/im/monitor/docs/BC_LMH42.pdf
http://www.lsc.usgs.gov/aeb/davids/acs/AdaptiveSampling.pdf
http://www.lsc.usgs.gov/aeb/davids/acs/AdaptiveSampling.pdf
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book (Helsel, D.R. and R.M. Hirsch. 2002. Statistical Methods in Water 
Resources.  US Geological Survey Techniques of Water Resources 
Investigations, Book 4, Chapter A3). See also part B for more details on 
outlier STORET codes. 

 
A bit more detail on each of the sample size outline steps is provided as follows: 

1) Refine (Provide More Time and Space Detail) Objectives and 
Questions 

 
Why revisit and refine questions? The monitoring design and statistics to be used 

are both driven by the questions to be answered, and it helps if the questions to be 
answered (and the identified target population being monitored) are as detailed in time 
and space specifications as possible (see earlier sections on Questions and Objectives and 
on representativeness and Target Population). Again, it is very important that all of the 
concepts in the following outline line up and be reasonable when all are considered 
together. 

If one calls them objectives rather than questions, the details of what, where, 
when, and (even) how big of a change can we detect; all still need to be detailed before 
one can design monitoring in an optimal way. The number of objectives competes with 
the number of samples in a cost-limited study (Kurt Jenkins, USGS BRD and North 
Coast and Cascades Network, Personal Communication, 2006). 

2) Identify Desired Conditions Qualitatively First 
 
The central monitoring plan should document desired future conditions (more 

recently referred to in the NPS as desired conditions or DCs). At the protocol 
development stage, additional detail on targets for individual water quality parameters or 
other indicators to achieve DCs should be placed in the protocol narratives. For a generic 
(not just water) Vital Signs monitoring discussion of DCs, see talks by Steve Fancy and 
Rob Bennetts at the San Diego NPS Vital Signs Meeting in 2006. Some of the key points 
therein and other related points are summarized briefly as follows: 

DCs are general qualitative descriptions used at the General Management Plan 
stage. In the new-style NPS General Management Plans, DCs are defined as “A 
qualitative description of the integrity and character for a set of resources and values that 
park management has committed to achieve and maintain” (NPS, 2005. Park Planning 
Source Book and Appendices and glossary portions of the revised NPS Planners 
Sourcebook, both available on NPS computers only).  

Additional insight may come from the new-style Resource Stewardship Strategies 
(RSSs, to be completed after the revised General Management Plans). At the later RSS 
stage, NPS staff members typically attempt to become more quantitative with goals 
(individual quantitative targets) for each of multiple water quality indicators. Together 
these multiple quantitative goals should help insure the much more general and 
qualitative desired condition statements. 

Recently completed NPS Watershed Assessments are good sources of information 
related to current conditions versus targets needed to achieve desired condition goals, for 

http://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3.pdf
http://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3.pdf
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://science.nature.nps.gov/im/monitor/meetings/SanDiego_06/SanDiego.cfm
http://science.nature.nps.gov/im/monitor/meetings/SanDiego_06/SanDiego.cfm
http://inside.nps.gov/waso/custommenu.cfm?lv=2&prg=50&id=3317
http://inside.nps.gov/waso/custommenu.cfm?lv=2&prg=50&id=3317
http://classicinside.nps.gov/documents/4%20OCTOBER%20APPENDIXES.pdf,
http://classicinside.nps.gov/documents/4%20OCTOBER%20APPENDIXES.pdf,


 63

those Parks that have had them done. The Watershed Assessment Program hopes to 
complete all 278 Natural Resource (I&M) Parks by 2014. For details, see NPS intranet-
only homepage (NPS. 2007. Program Plan to Assess Watershed Conditions).  

When considering reference conditions and targets for desired future conditions, 
monitoring networks should be sure to consult Park Superintendents and Park Resource 
Management Staff for their thoughts on DCs (and potential quantitative targets to help 
achieve DCs) from a management perspective.  

The final 2006 NPS Management Policies document notably emphasizes both 
protection of park resources for the enjoyment of future generations and sustainability of 
both natural and financial resources. With certain exceptions (big recreational use 
reservoirs, and a few other scenarios), the policy also notably emphasizes protection of 
native species. However, in recognition that conditions are not static, Section 4.4.2 
addresses the fact that natural processes will be relied upon to maintain native plant and 
animal populations.  

Section 4.4.4.2 of the NPS Management Policies 2006 document specifies the 
following for Removal of Exotic Species Already Present:  

 
All exotic plant and animal species that are not maintained to meet an identified 
park purpose will be managed—up to and including eradication—if (1) control is 
prudent and feasible, and (2) the exotic species interferes with natural processes 
and the perpetuation of natural features, native species or natural habitats, or 
disrupts the genetic integrity of native species, or disrupts the accurate 
presentation of a cultural landscape, or damages cultural resources, or 
significantly hampers the management of park or adjacent lands, or poses a public 
health hazard as advised by the U.S. Public Health Service (which includes the 
Centers for Disease Control and the NPS public health program), or creates a 
hazard to public safety. High priority will be given to managing exotic species 
that have, or potentially could have, a substantial impact on park resources, and 
that can reasonably be expected to be successfully controlled. Lower priority will 
be given to exotic species that have almost no impact on park resources or that 
probably cannot be successfully controlled. Where an exotic species cannot be 
successfully eliminated, managers will seek to contain the exotic species to 
prevent further spread or resource damage. 
 
Section 4.4.4.1 outlines circumstances under which exotic species may be 

maintained (generally only to maintain cultural landscapes or resource condition (i.e. 
non-natural parks or areas of parks), or to control other already established exotics. 

In other words, desired conditions, or even possible conditions, tend to be moving 
targets (and to vary within fairly broad ranges) due to purely natural processes. There are 
also anthropogenic stressors of various types, including invasive species, various direct 
and indirect human impacts, and countless other changes in stressors upon which NPS 
resource managers often have limited control. 

Related emerging concepts and complications include applied historical ecology, 
the fragmentary nature of history, the subjective and value-laden aspects of desired 
condition goals, and pre-Columbian impacts of man. Other issues include assumption, 
difficult-to-quantify confounding factors, no-modern-analog issues, and non-equilibrium 

http://www.nature.nps.gov/water/watershedconds.cfm
http://www.nps.gov/policy/MP2006.pdf
http://www.nps.gov/policy/MP2006.pdf
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paradigms. Thus it is sometimes fruitless to choose a single fixed point goal and better to 
use ranges [Swetham, T.W., C.D. Allen, and J.L. Betancourt, 1999. Applied historical 
ecology: using the past to manage for the future. Ecological Applications 9(4)]. 

How would global climate change influence NPS management and monitoring 
goals? Section 4.7.2 of the final 2006 NPS Management Policies states that  
 

“Earth’s climate has changed throughout history. Although national parks are 
intended to be naturally evolving places that conserve our natural and cultural 
heritage for generations to come, accelerated climate change may significantly 
alter park ecosystems. Thus, parks containing significant natural resources will 
gather and maintain baseline climatological data for reference.” 
 
However, the above paragraph still leads conscientious scientists and resource 

managers to contrasting opinions. Part of the debate relates to the fact that some tend take 
a longer term look at the issue than others. An interesting expanded discussion of “what 
is natural” and conserving biodiversity (including rare species, and how native species 
are often difficult to list based on our short term records, and dynamics of species 
movements) is found in Willis and Burks, 2006 (K. J. Willis and H. J. B. Birks 2006. 
What is natural? The need for a long-term perspective in biodiversity conservation. 
Science 314:1261-1265). 

If a non-native species eventually become “naturalized”, are not causing problems 
for native species, are helping rather than hurting for biodiversity, are appropriate due to 
changing climates, and/or are serving a vital ecological function that might otherwise be 
missing, etc.), NPS unit managers may eventually decide that “observed to desired” 
(O/D) species ratios are more useful than strict observed to expected (O/E) species ratios 
related to native taxa loss only. 

In other words, over the long run, not every scenario will be optimally covered 
with a strict (O/E) only. As mentioned earlier, there are some exceptions to general NPS 
Management Policies 2006 related to how recreation reservoirs are to be managed. In 
such habitats, NPS Recreation Area Managers may have the flexibility to choose not to 
try to get rid of non-native lake-species of fish simply because they are not native. In 
many cases, the natives were riverine fish, so their native habitats have been altered. In 
such cases, observed to desired (O/D) species ratios may be helpful. Some of the large 
NPS managed reservoirs have fishing recreation recognized in their enabling legislation. 

As can be seen in the discussion just above, these topics are complex and should 
be handled with some care, and only approached with involvement of NPS unit resource 
managers and ideally with input from Superintendents.  

Some States (albeit not without some controversy) have written Water Quality 
Standards language in a way that does not ignore existing realities by describing State 
reference conditions as “best available representatives of ecoregion waters in a natural 
condition.” EPA’s guidance on reference conditions for bioassessment likewise 
acknowledges that “Recognizing that pristine habitats are rare (even remote lakes and 
streams are subject to atmospheric deposition), resource managers must decide on an 
acceptable level of disturbance to represent an achievable or existing reference condition” 
(EPA. 2007. Aquatic Life Use Support (ALUS). 

http://www.fort.usgs.gov/products/Publications/258/258.pdf
http://www.fort.usgs.gov/products/Publications/258/258.pdf
http://www.nps.gov/policy/MP2006.pdf
http://www.sciencemag.org/cgi/content/abstract/314/5803/1261
http://www.nps.gov/policy/MP2006.pdf
http://www.epa.gov/waterscience/biocriteria/alus/ref2.html
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In a similar manner, some NPS-unit managers may decide it is OK to set short-
term goals for desired future conditions that are realistic considering foreseeable realities 
of surrounding areas. Longer term, these same managers may wish to consider desired 
future condition goals that more closely reflect more minimal anthropogenic effects (to 
the degree possible). 

Moving From Qualitative To Quantitative Goals 
 
As introduced above, the step of developing a new-style Resource Stewardship 

Strategies (RSS) is typically where the NPS starts making general DC goals more 
quantitative, by translating the general goals to more specific quantitative targets for 
individual water quality parameters. However, even if the park has not yet completed a 
quantitative RSS yet (and few had been completed by January, 2008), monitoring 
planners need to have some quantitative targets in mind for individual water quality 
parameters and indicators. Even if such targets are just  the result of an initial best 
professional judgment estimate, planners need quantitative targets before they will be 
able to compare existing condition to targets. That information is needed before 
monitoring planners can then compare calculated minimum detectable differences with 
ideal magnitudes of differences that monitoring needs to be able to detect. In other words, 
regardless of where the Park is in developing quantitative RSSs, monitoring planners 
need quantitative goals. How does the network propose doing this? Here is one 
recommended thought process. 

Consider NPS Impairment Guidance 
 
It is typically appropriate to think through where we are now and how big of a 

change from the current condition would it take to move beyond a negligible, minor, or 
moderate impact as defined in NEPA terminology (NPS 2003 Interim Technical 
Guidance on Impairment of Natural Resources (available on NPS computers only. 
Therein, parks decide whether or not a biological impact is negligible according to the 
following definition):  
 

Negligible Biological Impacts: Impacts occur, but are so minute that they have 
no observable effects on plants and animals and the ecosystems supporting them. 
The severity is “Trivial effects on individual organisms or areas of habitat.” The 
duration is “Short-term to long-term effects.” The timing is: “Outside of critical 
timing windows of key resources or ecosystems.”  
 
Parks decide how big water quality impacts are according to the following 

criteria):  
 

Negligible Water Quality Impacts are described as “Impacts are effects that are 
not detectable, well below water quality standards, and within historical baseline 
water quality conditions.” The impairment guidance (op. cit.) also describes other 
levels of water quality impacts: 
 

http://www2.nrintra.nps.gov/ard/docs/nrimpairment.pdf
http://www2.nrintra.nps.gov/ard/docs/nrimpairment.pdf
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Minor: Impacts are effects that are detectable but well within or below water 
quality standards and within historical baseline water quality conditions. 
 
Moderate: For most waters, impacts are effects that are detectable, within or 
below water quality standards, but historical baseline water quality conditions are 
being altered on a short-term basis. However, in outstanding natural resource 
waters (ONRWs), this threshold may approach the requirements for statutory 
impairment. 
 
Major: For most waters, impacts are effects that are detectable and significantly 
and persistently alter historical baseline water quality conditions. Water quality 
standards are locally approached, equaled, or slightly and singularly exceeded on 
a short-term and temporary basis. However, in ONRWs this threshold would 
probably constitute statutory impairment. 
 
In highly pristine resource parks or parks with highly valued, rare, or endangered 

resources will DCs be defined as negligible impacts according to the above?  
If the water is already much cleaner than default state water quality standards, will 

stronger quantitative water quality goals or anti-degradation standards be used? 
At the other end of the spectrum, if one is considering a historical park in a highly 

urbanized, industrialized, or farmed area where there is no reasonable expectation of ever 
achieving negligible impacts, the area may be in an alternate steady state. In this scenario, 
targets related to desired future conditions (DCs) may simply be avoiding additional 
significant impacts (anti-degradation). Another goal might be improvements in condition 
when the chance arises, or perhaps meeting urban habitat state water quality standards. 

Consider O/E Goals 
 
Observed to expected ratios (O/E) can be helpful when trying to develop 

quantitative desired condition goals. Such ratios are sometimes used in conjunction with 
predictive models to contrast existing conditions to specific targets related to more 
general desired conditions (DCs). O/E ratios and models have the advantage of being so 
easily understood that they are intuitively appealing.  

Recently the EPA 2006 nationwide Wadeable Streams Assessment (WSA) 
prominently used O/E primarily in the context of native benthic macroinvertebrate 
taxa lost. The WSA noted that under the Clean Water Act, non-native species that 
compete with and potentially exclude native species might be considered simply another 
stressor and in fact a threat to biological integrity. In the WSA, the Macroinvertebrate 
O/E Ratio of Taxa Loss measures a specific aspect of biological health: taxa that have 
been lost at a site, so non-native species are presumably not counted in either O or E 
metrics. The taxa expected (E) at individual sites are predicted from a model developed 
from data collected at least-disturbed reference sites; thus, the model allows a precise 
matching of sampled taxa with those that should occur under specific, natural 
environmental conditions. By comparing the list of taxa observed (O) at a site with those 
expected to occur, the proportion of expected taxa that have been lost can be quantified as 
the ratio of O/E (page 31, WSA). 

http://www.epa.gov/owow/streamsurvey/
http://www.epa.gov/owow/streamsurvey/
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The decision to include non-native but otherwise desirable species in either O or 
E metrics is a policy issue, not a scientific issue. Even in O/E ratios, non-natives could be 
included if they were considered to be a valuable resource (Chuck Hawkins, Utah State 
University, Personal Communication, 2007). 

To avoid terminology confusion, it might be better to call such ratios something 
else. . In some scenarios the O/E ratio could then become something closer to a “valued 
species observed to total number of species at the site under desired conditions” (or 
observed to desired --O/D for short) ratio or something similar rather than a more 
traditional O/E ratio based on native-species only.  Therefore, some investigators might 
be flexible on including certain desired or naturalized species (presumably those not 
overwhelming or otherwise causing significant problems for native species, ecological 
functions, or total biodiversity) on either the O or the E parts of the ratio. Large NPS 
reservoirs having recreational fishing prominent in their enabling legislation, where non-
native fish are stocked on purpose, constitute one exception to “native-only” policies. 
Such exceptions are specifically mentioned in NPS Management Policies 2006. 

However, except for these types of named-exceptions, many are understandably 
reluctant to move away from native-species-only goals, partly due to established laws and 
policies.  

For example, the protection of native species is not only emphasized by NPS 
policies, but also language of the Clean Water Act (CWA). Therefore, “when non-native 
species become established in either vertebrate or invertebrate assemblages, their 
presence conflicts with the definition of biological integrity that the CWA is designed to 
protect (i.e., having a species composition, diversity, and functional organization 
comparable to that of the natural habitat of the region).” (EPA. 2006, WSA). 
O/E ratios for benthic macroinvertebrates in wadeable streams of the U.S. are being 
improved to the point of becoming more and more broadly usable (see Predictive Models 
Primer of Utah State). Utah State, in conjunction with EPA EMAP and various state and 
federal agencies has worked out regional models for the Western US, Eastern Highlands, 
and the Midwest (EPA. 2006. Wadeable Streams Assessment).  

These regional models work fairly well for large regional scales but not (yet) 
always optimally well for site-specific condition assessments, where sample size may still 
be too low and/or local conditions may require a more site- or region-specific model. 
Utah State has developed state-specific models for OR, WA, CA (3), WY, MT, and CO. 
Models for ID, UT, and AZ will be completed soon. Not always fully understood is that it 
is really more accurate to talk about 'sample' O and E and not 'site' O and E. It is not yet 
clear how well sample O/E scales to true site O/E. The same is true for other metrics too 
(Chuck Hawkins, Utah State University, Personal Communication, 2006).   

Northern Cascades National Park staff members are developing a network-
specific O/E predictive model (similar to the one used by the EPA WSA) to use at North 
Coast and Cascade network Parks (Reed Glesne, NPS, Personal Communication, 2006) 
and similar efforts are underway for Rocky Mountain Network Parks (Billy Schweiger, 
NPS, Personal Communication, 2006). 

Until more park, region, state, or network-specific O/E predictive models are 
available, state water quality standards, and comparison values from state or regional 
multi-metric biotic integrity methods are often used as interim quantitative comparison 
benchmarks. If the water is already much cleaner than default state water quality 

http://www.nps.gov/policy/MP2006.pdf
http://www.epa.gov/owow/streamsurvey/
http://129.123.10.240/WMCPortal/ModelSection.aspx?section=124&title=primer&tabindex=-1
http://129.123.10.240/WMCPortal/ModelSection.aspx?section=124&title=primer&tabindex=-1
http://www.epa.gov/owow/streamsurvey/
http://www.epa.gov/owow/streamsurvey/
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standards, Parks and networks often need to decide whether or not stronger quantitative 
water quality goals or anti-degradation standards will be used to estimate desired future 
conditions. 

Even when highly refined O/E predictive models are available, many believe that 
we should also look at other lines of evidence, such as evidence from multi-metric 
methods, multivariate methods, chemical evidence, and physical habitat evidence. 
Although it is one of the strongest lines of evidence, O/E tends to focus on only one line 
of evidence (native taxa lost). 

EPA’s 2006 national wadeable streams assessment (WSA) found that O/E results 
tended to track but not exactly replicate multi-metric methods that looked at more lines of 
evidence. In its executive summary, EPA summarized the nationwide stream condition 
results from different regions based on its “Macroinvertebrate Index of Biotic Condition” 
rather than O/E, which was first mentioned in the context as supporting evidence from a 
single (albeit very important) line of evidence on page 39 of the report. So although O/E 
has particular appeal, we should probably continue to examine relevant data from all 
different angles including all available multiple lines of evidence.  

In addition of O/E, other intuitively appealing and easily understandable “report 
card” type metrics that cross different types of resources (aquatic, terrestrial) etc. (and are 
potentially useful for GPRA type reporting goals) also often use proportions. Among 
these are the % of time not meeting standard (or exceeding a threshold), % of river miles 
impaired, % of lake or ponds (or their surface area) impaired, etc. 

Iterative Goal Setting 
 
Initial quantitative goals to help achieve desired conditions (DCs) need not be 

permanent. Gradually refining DC goals in a classic DOI-style adaptive management 
cycle might follow a pattern such as this (expanded slightly but based on suggestions by 
S. Fancy. 2006. Desired Future Conditions). 

 
1. Park staff qualitatively describe the DC in the new General Management Plans,  
2. Park staff compare current conditions for various water quality parameters and 

other indicators to targets needed to help achieve DCs. Decisions should be 
documented in the new cycle of developing Resource Stewardship Strategies 
(RSSs) that include quantitative performance measures and goals. This might 
typically include listing current % of river miles impaired vs. goals in the same 
units relevant to GPRA and DCs. 

3. Park staff members develop and implement management strategies to achieve 
desired conditions.  

4. Park staff (at times possibly supplemented by Vital Signs planning and 
monitoring information already completed) finishes developing quantitative 
performance measures for monitoring. At this stage it would be optimal to be as 
quantitative as possible and define minimum detectable differences of the 
monitoring design. 

5. Monitoring is done to detect trends in resource conditions and evaluate 
management effectiveness (Sit, V. and B. Taylor (editors) 1998 Statistical 

http://www.epa.gov/owow/streamsurvey/
http://science.nature.nps.gov/im/monitor/meetings/SanDiego_06/San%20Diego%20DFC%20Breakout.ppt
http://www.for.gov.bc.ca/hfd/pubs/docs/lmh/lmh42.pdf%20or%20http:/science.nature.nps.gov/im/monitor/docs/BC_LMH42.pdf
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Methods for Adaptive Management Studies, B.C. Min. For., Res. Br., Victoria, 
BC, Land Manage. Handbook. No. 42.). 

6. Park management uses the results from monitoring to take adaptive management 
actions to help achieve desired conditions,  

7. Park staff returns to (1) above, and they refine quantitative targets to help achieve 
DCs, if appropriate, and  

8. Park and monitoring staff keeps repeating the cycle and refining each step as 
appropriate as lessons are learned. 

3) Identify Resource-Collapse and Other Thresholds of Concern 
 
In the absence of other more detailed information on thresholds, one often uses 

water quality standards that already have a safety margin built-in. 
Park resource managers would typically desire to detect a change smaller than one 

that would change conditions from what they are currently to a condition that no longer 
meets water quality standards. They also would typically want to detect changes smaller 
than a change that might move conditions across a threshold that would cause a resource 
collapse.   

The monitoring protocol narratives should identify a resource collapse threshold 
for each vital sign or measure, if one is known, but often resource collapse thresholds are 
not known. However, one advantage of long term monitoring is that our understanding of 
resource dynamics and thresholds and threshold models can be refined in an adaptive 
management fashion as more data is collected.  

There are many examples of this in fishery literature. A resource collapse in one 
location sometimes identifies the threshold and the threshold can then be used to protect 
against collapses in other similar habitats in the region. Commercial fish interests and 
some fishery regulatory agencies might manage a fishery to sustain less than 50% of 
virgin biomass (sometimes goals are as low as 30%) to strike a political/societal balance 
between sustainable fishery yields and economic benefit  Of course, this is a strategy that 
could radically change species relationships away from normal conditions. In the North 
Atlantic Cod fishery, not only was the natural biomass of Cod greatly reduced, but 
shellfish numbers and catches greatly increased, partly due to the reduction of their 
predators (Ray Hilborn et.al. 2003, State of the World’s Fisheries, Annu. Rev. Environ. 
Resour. 28:35).  

For contrast, in the NPS we would ordinarily try to mange species assemblages 
and biomasses to reflect more natural conditions (far more than 50%, probably often 
closer to 85% plus or minus 15% or something similar for virgin biomass). The NPS 
would also tend to manage for normal biotic assemblages.  

Sometimes there are no resource collapse thresholds available and one has to use 
other quantitative comparison benchmarks. EPA Costal EMAP has suggested regional 
coastal threshold criteria for many indicators, including chlorophyll a, benthic indices, 
water clarity, and DIN and DIP (EPA et al., 2007, National Estuary Program Coastal 
Condition Report, Chapter 2). 

Various water, sediment, tissue, and soil benchmarks are also often used. Risk 
assessment-derived benchmarks, especially No Observable Adverse Effect Levels, No 
Effect Concentrations (NOAELs, NOECs), and Low Effect Levels, can be used as one 

http://students.washington.edu/arnima/pdf/sowf.pdf
http://www.epa.gov/owow/oceans/nepccr/index.html
http://www.epa.gov/owow/oceans/nepccr/index.html
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starting point, as long as it is realized that they are often less than optimal since they are 
seldom based on considerable local or regional work or even sound statistics. However, 
in some cases one has to use what is available until something better and more 
defendable is available (adaptive management approach). 

Summaries on data comparison benchmarks for metals and industrial organics and 
petroleum hydrocarbons in water, sediment, soil, and tissues, updated through 1997-
1998, are summarized in the NPS Contaminants Encyclopedia. The NPS encyclopedia 
contains general ecological toxicity profile information on 118 contaminants (listing of 
all 118 topics, and for references for all 118 topics).  

Similar hazard profiles for human health instead of ecological resources are 
available from ATSDR. 

Whether or not there are state water quality standards, it is often desirable to 
compare local conditions to regional benchmarks and/or the most pristine areas in the 
region. 

Change point analyses are data-hungry and computationally complex but are 
sometimes used as one line of evidence for thresholds. However, such analyses are no 
more definitive as a stand-alone evidence of causation than correlation analyses (see N-
steps change point analysis introduction and correlation introduction. Change point 
analyses are usually used in conjunction with regression techniques to plot and otherwise 
analyze the relationship between two variables (see regression introduction). 

.Thresholds, including water quality standards, should be thought of in the context 
of “if-then” management decision rules. If damage or toxic concentrations exceed such 
and such and magnitude, then we will do what? Will we reduce visitation, begin 
remediation, or reduce fishing pressure (or what, see section IV-C of Part B)? 

4) Identify Existing Conditions 
 
This usually includes the previously discussed analysis of past data. In some 

cases, pilot-scale studies will have to be done when little or no information is available.  

5) Develop Safety Margin between Existing Conditions and Threshold Magnitude 
 

How much does the ambient condition have to change to get to a threshold of 
concern or a specified desired future condition? If a resource collapse threshold is known, 
how much does the ambient condition have to change to get the threshold (the value 
below which the resource will not recover, or will recover at an unacceptably slow rate, 
also called a breakpoint by some)?  

Again, if one is only 10% of the mean away from disaster, then obviously being 
able to detect an effect-size change of a magnitude of 20% of the mean is not good 
enough. Water quality standards usually have a safety margin built in, but many other 
comparison benchmarks do not.  

Too often, monitoring projects fail to detect true anthropogenic effects (type II 
error, false negatives, the conservationist’s risk) because of inadequate survey design. In 
studies that measure change, there must be a large enough sample size to detect the 
minimum effect, or smallest difference or change that will cause management action. The 

http://www.nature.nps.gov/hazardssafety/toxic
http://www.nature.nps.gov/hazardssafety/toxic/list.html
http://www.nature.nps.gov/hazardssafety/toxic/list.html
http://www.nature.nps.gov/hazardssafety/toxic/referenc.pdf
http://www.atsdr.cdc.gov/toxpro2.html
http://n-steps.tetratech-ffx.com/PDF&otherFiles/stat_anal_tools/Change%20Point_final.pdf
http://n-steps.tetratech-ffx.com/PDF&otherFiles/statistical_Methods/correlation_final.pdf
http://n-steps.tetratech-ffx.com/PDF&otherFiles/statistical_Methods/regression_final.pdf
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
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smallest change is usually defined in terms of an “effect size” or minimum detectable 
difference (MDD). 

How is the effect size expressed? Is it in original units as a difference between a 
mean and a water quality standard or the difference in two means? This is a common 
definition used by and is also used by Zar (op.cit.) and a few others. 

Or is “effect size” the totally different concept used in behavioral sciences and 
recent water quality work, a percent of the standard deviation (difference divided by the 
standard deviation all times 100 to get a percentage, where the standard deviation is the 
pooled within groups standard deviation)? 

Or is effect size a percentage change in a proportion, or a model output function? 
In the case of fisheries, thresholds have usually been defined following collapses, 

trial and error, and (sometimes) long recoveries. One reason for being precautionary is 
that some collapses can be permanent, with recovery never occurring. If a species is on 
the edge of its range, or just making it for whatever reason, even a minor change, such as 
a climate change or new competing species, might prevent recovery. Or, as is the case for 
some endangered species, populations can sometimes simply become so small that they 
don’t survive. 

In one example that considered both collapse threshold (magnitude) and smaller 
(safety margin) effect sizes to be detected, a slow growing macro algae, Hormosira 
banksii, was found to readily recover from depletion down to 30% cover. Pilot studies 
indicated an average cover of 75-85% cover. To give some margin of safety, the critical 
effect size goal was determined; monitoring needed to be able to detect a 30% or greater 
reduction in cover. This would allow detection of a reduction of cover from 75 to 45% 
and would also provide an effect size a safety margin of at least 1.5 (45/30) times 
compared to the collapse threshold of 30% cover. The idea was to give management time 
to institute protective strategies well before the threshold of 30% total cover might be 
reached (Mapstone, B.D. 1995. Scalable decision rules for environmental impact studies: 
effect size, Type I and Type II errors. Ecological Applications 5: 401–410). 

6) Document Variability in Time and Space 
 
The protocol narrative should document what is known about variability patterns 

in both time and space. Whenever practicable, target population definitions and sample 
sizes estimates should not be finalized without the best available estimates of variability 
patterns. Typically, the better such estimates are, the better one can design monitoring in 
an optimal way.  

Estimates of variation can vary according to sample size and according to the 
magnitude of signals and means. Exclude variability estimates if they are mostly based on 
signals not more than twice the MDL low-level detection limits, since variability in 
measures that close to the very lowest detection limits would typically be much higher 
than for normal measurements (Part B). 

Calculating the initial probability of detecting an effect size (as a % of the 
standard deviation) does not require input of a variance or nonparametric analogs. 
However, as soon as such estimates are available, they should be documented so that they 
can be used as input variables in estimating a minimum detectable difference (MDD) in 
original units of measure.  

http://links.jstor.org/sici?sici=1051-0761(199505)5%3A2%3C401%3ASDRFEI%3E2.0.CO%3B2-A
http://links.jstor.org/sici?sici=1051-0761(199505)5%3A2%3C401%3ASDRFEI%3E2.0.CO%3B2-A
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
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It is best to also have MDDs in original units of measure, since they are more 
intuitive and understandable as well as typically being more comparable with water 
quality standards and other comparison benchmarks. It is also optimal if the initial 
variability magnitude estimates come from the areas to be sampled. If no such 
information is available, past data from similar habitats in the region will often be an 
acceptable starting place for initial estimates of variability. If there are no nearby data 
from similar habitats from past monitoring, pilot-scale monitoring may be needed. 

Most of the required-sample-size calculations related to comparisons with means 
depend on a good estimate of the standard deviation (SD), so be wary if the SD estimate 
is based on sample sizes under 30-50 unless variation is known (for sure) to be VERY 
small. Also be wary if the values used to estimate a Standard Deviation do not cover the 
full range of time and space conditions of the identified target population. If the 
variability is very low and the full range of conditions has been covered, a few samples 
may be enough, but a few samples may be virtually worthless in the presence of 
substantial variation (a common case for most water column measures). The same is true 
of most other summary statistics (not just SDs) 

Low sample sizes can not only be a problem related to hypothesis tests, but also 
can decrease the accuracy with which we can estimate a confidence interval about a mean 
or proportion.  

In the case of proportions, the caution about small samples (less than 30-50) also 
applies, see EPA discussion of “why a sample size of 50”. Estimating needed sampler 
sizes for proportions is in some ways simpler, since the sample SD is not an input for 
sample size calculators. If we compute a standard error of a proportion (p) from a sample, 
the standard error of that proportion would be estimated as follows: 

 

Thus, the larger the sample size (n), the smaller the standard error (or other confidence 
interval) about the estimated proportion. Statisticians refer to this as “precision” (sic), 
though it is really about the magnitude of a half width of a confidence interval (the part 
on the either side of the mean) from multiple data points rather than the more familiar 
precision in QA/QC settings relevant to each data point. See USGS discussion for a 
typical statistical-specific special definition of statistical precision as a confidence 
interval half-width. 

In the case of the standard error of the mean (SEM), by contrast, a typical 
estimate the magnitude the SEM is dependent on both sample size and the sample 
standard deviation (SD). 

At very small sample sizes the sample SD may over or underestimate the true 
population SD, due to the particulars of the specific sample, but in general, as Zar 
(op.cit.) explained, the sample SD tends to slightly underestimate the true but unknown 
population SDs, less so at large sample sizes. Other generalizations about SDs vs. sample 
sizes are typically problematic and potentially misleading. 

Confidence intervals are about uncertainty rather than just about variability, and a 
key to understanding the relationships between SEMs (or other varieties of parametric 

http://www.epa.gov/nheerl/arm/surdesignfaqs.htm#samplesize50
http://fresc.usgs.gov/research/esrmonitoring/Strategy.htm
http://fresc.usgs.gov/research/esrmonitoring/Strategy.htm
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CIs about means) and standard deviations is that (if sample size is large enough) one can 
have high data variability (i.e., a “large: standard deviation) while at the same time 
having a “small” standard error about the mean. That is, even if data are very variable, if 
one has a large enough sample size; one will have a very small confidence interval about 
the mean, reflecting a comparatively accurate estimate of the mean. For more details, see 
page 50 of McBride’s statistical text book (McBride, G.B. 2005. Using Statistical 
Methods for Water Quality Management: Issues, Wiley, NY, 313 pp.). 

If one understands variability in time and space well enough (and statisticians will 
point out that this is often not true), stratified random samples, sometimes accompanied 
by narrow temporal collection index-period windows, can be used to reduce variability 
and make it easier to detect trends between years or over a period of several years.  

For contrast, simple random sampling or sampling at various times of year (or 
even various times of day) can 1) increase variability greatly for many water column or 
sediment quality parameters, and/or 2) greatly increase the number of samples needed, 
and/or 3) decrease our ability to pick out a signal (true change of a certain magnitude) 
from the background of natural “noise” variability, and/or 4) decrease our confidence in 
the magnitude of the signal we will be able to detect), and/or 5) increase cost, and 6) 
often results in clumped samples that are not spatially balanced. Also, considerable 
seasonal, temporal, or microhabitat-type driven variability is more common for 
contaminants sampling in water or sediments than has been widely recognized.  

Again, too often strata or index periods are picked based on untested assumptions 
about patterns of variability. The more one understands variability in time and space, the 
better job one can do of making decisions about potential strata and index period 
windows of time (and/or space) to sample. 

For example, in diatom work done in Idaho streams, sampling date had a much 
stronger effect on assemblage compositions than sampling year or the sampling location 
within a reach, a pattern one might not have intuitively guessed before sampling began 
(Cao et al. 2006, Sources of Error in Developing Biotic Indicators for Diatom 
Assemblages in Idaho Streams, NABS Anchorage Mtg. abstract). 

General monitoring design theory holds that "if the response of interest displays 
substantial variation in one aspect of time or space, but not the other, we need to sample 
across the variable dimension, but can more or less ignore the other with little loss of 
information" (Scott Urquhart, Department of Statistics, CSU, Personal Communication, 
2006). 

How large does variation from one component have to be before it becomes 
dominant over a smaller component? One simplified rule of thumb is that if one standard 
deviation is five times larger than another, than the larger one becomes dominant and the 
smaller one becomes relatively insignificant (United Kingdom Accreditation Service, 
2000. The Expression of Uncertainty in Testing, UKAS Publication ref: LAB 12. 

In the water quality world, it is often handy to assess which variance contributors 
are driving most of the variability. However, a typical problem we have for water 
column measures is that such measures tend to vary not only by space, but also by time 
of year and even by time of day. So all readily apparent dimensions (including residual 
variation from lack of perfect measurement precision) appear to contribute to variation, 
and there appear be none that we can automatically ignore.  

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471470163.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471470163.html
http://www.benthos.org/database/allnabstracts.cfm/db/Anchorage2006abstracts/id/302
http://www.benthos.org/database/allnabstracts.cfm/db/Anchorage2006abstracts/id/302
http://www.ukas.com/Library/downloads/publications/LAB12.PDF
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This may present an example where the only way to find a year to year trend 
would be to use measuring instruments that can measure very precisely (to minimize 
residual variation) and to narrowly limit index collection time and space-periods in more 
than one dimension (to try to get true variability down). For example, a protocol might 
call for sampling only during mid summer low-flow AND only in the morning, and to 
sample only in full-mixed and/or narrowly-defined microhabitat strata. Again, when 
making these kinds of decisions, the more we understand about variation in time and 
space (and from lack of perfect measuring instrument precision), the better off we are.  

7) Revisit and Refine Target Population Details 
 
 Previous sections introduced Representativeness and Target Populations. When 
one is refining protocol details by moving into calculating required sample sizes, it is a 
good time to revisit what will be done to assure representativeness and how large target 
populations should be given funding limitations.  

Target populations should be identified as narrowly as possible in time and space. 
Make sure that identified target populations line up with questions, proposed monitoring 
design, and other factors in this outline. For example, does the monitoring design ensure 
that the samples will be fully representative of the full range of values in the target 
population, considering what is know about variability in time and space? Is the target 
population all values that could be measured in bluegill sunfish in the park, or daytime 
bluegill sunfish between length A and B, only in limited and defined-size-range of small 
ponds that are road or trail accessible? 

8) How Big of a Difference or Change Do We Need to Be Able to Detect? 
 
What magnitude of change (or difference vs. a water quality standard or other 

comparison-benchmark) do we need to able to detect? Once initial qualitative decisions 
about desired conditions (DCs) have been made, to intelligently design long term 
monitoring and to decide and document the magnitude of minimum required-sample-size 
targets, there is usually no getting around the tough decision of what is the 
QUANTITATIVE minimum detectable difference (MDD) that we need to be able to 
detect. Sometimes the MDD is expressed as an “effect size” (hereafter, abbreviated to 
ES). Whether we call it a MDD or an ES, it is the magnitude of change that we need to be 
able to detect in order to be able to manage the resource in an optimal, protective, and 
precautionary manner. This is a decision to be made by NPS staff, not statisticians. 

Monitoring Design Sensitivity vs. Measurement Sensitivity 
 
Just as there are detection limits (such as method detection limits/MDLs, see 

section farther below on QC measurement sensitivity) for single measurements, on a 
higher level of organization (multiple measurements), a given monitoring design will 
have a detection sensitivity (minimum detectable difference, MDD). The MDD 
magnitude is driven by variability, sample sizes, significance level selected, power 
magnitude selected, and various other details.  
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No matter the scale or level of organization, sensitivity always relates to signal to 
noise ratios and how small of a difference we can detect quantitatively.  

Lack of perfect measurement precision contributes to variability magnitudes (on 
the scale of each data point). True heterogeneity contributes variability (on the 
monitoring design scale). Both contribute to the overall variability of the values recorded.  

How would one compare the magnitude of these two contributors to total 
variability? Lack of perfect measurement precision simply adds variability above and 
beyond true heterogeneity, so it is already factored in when samples from the Target 
Population are measured. On the other hand, if sample sizes are too small and/or the full 
range of the target population are not fully covered by the sampling scheme, true 
variability may be estimated poorly (often underestimated). This is yet another 
contributor to poor estimates of true heterogeneity. Assuring representativeness is crucial. 
Herein, for clarity, we do not use the phrase “sampling error” when the concept being 
discussed is really just variability rather than systematic error/bias. 

Assuming representativeness is well assured, frequently the next question of 
interest then becomes whether or not measurement uncertainty is so large that it is 
significantly impacting our estimates of true heterogeneity in variables.  

One can combine sources of uncertainty in sum of squares equations for either 
combined or expanded uncertainty. 

As mentioned before (Why Document QC), no (single) measurement is perfect. 
Each is an approximation and individual measurement data points are not complete 
unless accompanied by a statement about the uncertainty of that approximation. 

So ideally, one would not report a single measurement of say dissolved oxygen as 
5.0 but rather 5.0 + 0.2 if 0.2 was the calculated NIST/ISO expanded uncertainty. In 
water quality monitoring, this has not yet gained wide acceptance, but it should be done 
more in the future, especially if properly-framed confidence intervals about summary 
statistics (means, median, SDs, etc.) are not calculated and provided to data users along 
with sample sizes. If the summary statistics are given with confidence intervals, then the 
increased variability brought on my single-measurement uncertainty is already factored in 
and the single measurement intervals would just give one an estimate of the contribution 
of measurement uncertainty versus other contributors to total variability. 

One handy rule of thumb used in the United Kingdom (UK) is that (in root sum of 
square equations), there is no need to add negligible variance [each square of a standard 
deviation (SD) is a variance] terms. Although adding them would be the safest (especially 
if there are many such terms to complicate the issue) in many cases if any of the standard 
deviations is so small that their contribution to overall uncertainty is negligible (the 
standard deviation is at least five times smaller the standard deviation of the next largest 
contributor to uncertainty), they may often be ignored. In other words, regarding 
“domination of the combined value” (in sum of squares equations) by one component 
(expressed as a standard deviation), “there is not a clear-cut definition of a dominant 
component but a practical guide would be where one component was more than five 
times greater than any other”  (United Kingdom Accreditation Service, 2000. The 
Expression of Uncertainty in Testing, UKAS Publication ref: LAB 12,). In some further 
clarifications that include Bayesian and other more complex discussions, UKAS 
continues emphasizing the importance of dominance, giving separate ways to handle 
parametric and non parametric cases:  “The exceptional case arises when one contribution 

http://physics.nist.gov/Document/tn1297.pdf
http://physics.nist.gov/
http://www.iso.org/iso/home.htm
http://www.ukas.com/Library/downloads/publications/LAB12.PDF
http://www.ukas.com/Library/downloads/publications/LAB12.PDF
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to the total uncertainty dominates; in this circumstance the resulting distribution departs 
little from that of the dominant contribution….in the absence of a dominant component, 
combine them by taking the square root of the sum of the squares. This gives the 
combined standard uncertainty” (UKAS, 2007, The Expression of Uncertainty and 
Confidence in Measurement). 

If there are more than two major contributors to variability, do the sum of squares 
with all variance (SD squared) terms included to see if including the relatively low 
magnitude SDs changes the results appreciably. 

Beyond the issue of having more than two major contributors to variability, there 
are other issues that might make the 1/5th rule not work optimally in every situation. For 
example, in some types of reconnaissance-level sampling, it is impossible to collect 
enough samples to accurately define natural variability (either temporal or spatial) within 
the time frame and funding available. On the measurement scale of concern, unless one is 
looking over a long time period and multiple QC samples, one often does not have a large 
enough sample size to accurately estimate a standard deviation for measurement 
precision. In fact, at first one typically just has sample size of two (and thus difference is 
expressed as a relative percent difference---RPD). Why is this important? When either 
the enumerator or the denominator (and especially both) are not good estimates of the 
SD, one can't accurately judge the 1/5th threshold. The 1/5th rule depends on good 
estimations of the standard deviations. Standard deviations are typically not well 
estimated at small sample sizes (below 25-30 and especially below 7-10) or when the 
values used to generate the SD for true environmental heterogeneity do not represent the 
full range of conditions of the representative Target Population being sampled. 

If sample sizes are too low or if calculated SDs are not representative of the target 
population, these faults should be corrected before putting too much weight on the results 
of the 1/5th rule of thumb.  

This factor of 5 (expressed as a SD) is generally consistent with other signal to 
noise rules of thumb. Most of these rules of thumb state that (for accurate measurement) a 
signal should typically be 3 to 10 times greater in magnitude than noise (see Part B for 
more detail and several examples). Statements such as "errors in the analytical 
measurements should be no greater than the natural variability of the parameters of 
interest" should be rejected since such errors should usually be at least 5 times lower 
(when expressed as SDs). 

What about other summary statistics used for variability? Can one also see if 
either a coefficient of variation (CV, the standard deviation divided by the mean) or a 
relative standard deviation (RSD = CV*100) is 5 times lower than their counterparts, 
when estimating true environmental variability (on measurements of different samples)? 
No, these are different. The 1/5th rule of thumb should be used with SDs only. Using this 
rule for other summary statistics produces different results. 

Calculate Monitoring Design Sensitivity 
 
Why determine detectable differences in summary statistics based on 

measurements of different samples? Generic VS guidance has suggested that networks 
“List the specific, measurable objectives for each vital sign selected for monitoring, and 
wherever possible, give the threshold value or “trigger point” at which some action will 

http://www.ukas.com/library/downloads/publications/m3003.pdf
http://www.ukas.com/library/downloads/publications/m3003.pdf
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
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be taken” (NPS. 2004. Outline for Vital Signs Monitoring Plans). To be precautionary in 
preventing major impacts or even a resource collapse, monitoring networks typically 
have to be able to detect a change smaller than the chosen thresholds or trigger values 
(see more detail below). 

 

Effect Sizes (ESs) Based On Multiples of the Standard Deviation 
 
The effect size (ES) in social sciences is usually expressed as a % of the true 

standard deviation rather than original units of measure. It is usually the minimum 
detectable difference between means (or between a mean and a water quality standard or 
other benchmark) divided by best estimate of the true (but unknown) population standard 
deviation. That best estimate is most often a pooled standard deviation that covers a 
broad range of conditions. The pooled standard deviation (SD) for two or more samples 
is essentially the square root of the average variance (Widener University Descriptive 
Statistics home page includes a full equation for a pooled SD). 

The ES result is the magnitude of change expressed as the number of standard 
deviations. One then multiplies the result x 100 to get the result expressed as a percent of 
the standard deviation. So the final ES is in % units rather than original units of measure. 
One ES advantage is that comparisons of effect sizes for different measures or vital signs 
can easily be made between different vital sign measures and time frames, since all ESs 
are expressed in SD units. Also, no initial estimates of variability are needed; a big 
advantage if one is making initial calculations before any credible estimates of variability 
are available. 

In psychology, a “large” standardized effect size (ES) would be considered to be 
an 80% change in Standard Deviation (SD) units (Cohen, J. 1988. Statistical power 
analysis for the behavioral sciences. Lawrence-Erlbaum, Hillsdale, N.J.). This would 
often be a small change in field biology or field water quality scenarios. 

Also, environmental variables are often not normally distributed and sample sizes 
are often small, so ES calculations are usually used only for very rough initial estimates, 
for comparing effect sizes between indicators and for looking at effect magnitudes from 
different angles (not using original units). 

A major drawback of using ESs in SD units is that if one chooses a certain ES 
magnitude (say  80% for example), one will choose the same sample size regardless of 
the accuracy or reliability of the measuring instrument or the true variability of what is 
being measured. This is clearly not ideal, and one more reason to also look a power or 
detectability in original units as soon as possible. One should use power prospectively, 
put science before statistics, and do pilot studies [Lenth, R. V. 2006.  Java Applets for 
Power and Sample Size (Advice Section)].   

Although some investigators also use the phrase effect size when talking about 
original units of measure, to avoid confusion, herein we use it only when referring to 
differences as multiples of the standard deviation, typically to used only very early in the 
monitoring planning process or when trying to standardize differences between 
indicators. 

http://science.nature.nps.gov/im/monitor/docs/monplan.doc
http://science.widener.edu/svb/stats/descript.html
http://www.math.uiowa.edu/%7Erlenth/Power/
http://www.math.uiowa.edu/%7Erlenth/Power/
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Minimum Detectable Differences (MDDs) in Original Units 
 
A minimum detectable difference (MDD) in original units of measure is typically 

a minimum detectable difference between means (or medians, or other summary statistic) 
in the current sample compared to either 1) a summary statistic from a different sample 
(collected somewhere else in time or space), or 2) a water quality standard or other 
benchmark. 

A good example of a NPS Vital Signs network calculating and factoring in 
minimum detectable differences is the NCPN Freshwater Protocol. Other water quality 
protocols narrative drafts (San Francisco, Pacific Islands, and Great Lakes Networks) are 
also at various stages of documenting minimum detectable differences. 

Choosing on the monitoring design scale of concern is usually done in an iterative 
manner. If one does not already have an established and reasoned goal, first choose an 
initial MDD that seems reasonable. For example a network might decide to pick a 30-
40% change (in original units of measure) over a one year period as an initial MDD 
change in a mean as a starting point. Next, have the network quantitative ecologist run 
the numbers (step 12) to see if the monitoring design will be able to detect a change that 
small. Often initial decisions on sample sizes, sample numbers, sample locations, and 
detectable differences simply will not work and adjustments in one or more of these 
factors (and/or in alpha or beta) are be needed to improve detection probabilities. 

There are a few isolated cases where the NPS has logical reasons for the need to 
be able to detect very small change, such as a 5% MDD as change in means in original 
units (not SDs). For example, for air quality goals, a 5% change in visibility was shown 
in human studies to be "perceptible." The Clean Air Act states that "visibility 
impairment” is defined as “any humanly perceptible change in visibility from that which 
would have existed under natural conditions." (USFS, FWS, and NPS. 2000. Federal 
Land Managers Air Quality Related Values Work Group Phase 1 Report).  

However, in open aquatic habitats, it is usually it is difficult to detect changes that 
small in means or original units, so it is more common to try to detect 20-40% 
differences, sometimes from year to year or sometimes over a stated number of years. 

In deciding how big of a change or difference monitoring needs to be able to 
detect, it is helpful to consider the type of park(s) being monitored and park-specific 
management goals. In the variable worlds of aquatic biology and water quality, detecting 
a 5% change, either as a MDD or ES, would usually be impossible or require so many 
samples that it would be prohibitively expensive. Keep in mind that the smaller the MDD 
or ES one is trying to detect, usually the more samples one would have to take (more 
costly) and the more difficult it is to find a strata where the variability is low enough to 
allow detecting such a small change. Therefore, it is usually not advisable or often not 
possible to detect extremely small changes (1-5%). Consider the following more typical 
scenarios: 

 
Scenario 1: The resource to be protected is an endangered species or a very highly 
prized and rare resource in a relatively pristine area of a park having natural 
resource protection as a key goal: In this case, a park resource stewardship plan 
might logically call for a relatively high degree of protection and management 
precaution. Such a park might even choose to protect such a resource very 

ftp://ftp.den.nps.gov/incoming/BRCA/Formatted/SOP_00_NCPN_Protocol_Narrative_0407.doc
http://www2.nature.nps.gov/air/Pubs/pdf/flag/FlagFinal.pdf
http://www2.nature.nps.gov/air/Pubs/pdf/flag/FlagFinal.pdf


 79

stringently. Anything above a negligible or even a detectable impact of concern 
might not be considered acceptable relevant to desired conditions (DCs). The 
minimum detectable difference (MDD) the park might want to detect might be a 
relatively stringent 5-25% change in means in original units of measure. In SD 
units, the ES size the NPS might want to detect might be as small as a 10-30% 
change when the change-magnitude units are the number of standard deviations 
expressed as a %. 

 
Scenario 2: The resource to be protected is a population of an aquatic species at a 
typical national park, but the species is very common in the region and/or nation 
(for example, a bluegill sunfish). In this case, the park might designate a less-
stringent MDD, such as a more common 20-50% change in means, or an ES 
change-magnitude of 30-70%, when the units are a percentage of the magnitude 
of the standard deviation. 

 
Scenario 3: The natural resource to be protected is general water quality or a 
population of a common aquatic species at a historical park in a highly urbanized 
or highly farmed area. Here the water quality and aquatic habitat is such that there 
is little or any hope of ever reaching “unaffected by modern civilization” status, 
and this is reflected by state water quality standards and biocriteria that are less 
stringent than one would find in less-impacted areas of the country. Perhaps the 
biota to be protected is short-lived and highly variable even in pristine areas. In 
this scenario, the park might decide that only larger changes can or need be 
detected. The park might therefore want to be able to detect a MDD of a 40-80% 
change in means, or an ES change of 70%-90% when the units are a percentage of 
the magnitude of the standard deviation.  

 
The examples above are mentioned only to give monitoring planners a very rough 

idea of some typical ballpark (starting-point) ranges of values. Whenever one has first 
developed a logical and defendable park-specific MDD or ES, of course those values 
should be documented and used instead of the examples above. 

The NOAA National Estuarine Eutrophication Assessment (NEEA) monitoring 
program specified the following starting-place change magnitudes for Submerged 
Aquatic Vegetation (SAV): 

 
A change in spatial coverage of the SAV beds was considered very low from a 0-
10% change, low from a 0-25% change, moderate from a 25 - 50% change, and 
high for a >50% change. However, NOAA is now thinking of alternatives, since 
some believe a 25% change might in fact be very significant (Suzanne Bricker, 
NOAA, Personal Communication, 2007). 
 
What if the park simply has no idea whatsoever how big of a MDD they need to 

be able to detect to protect important resources? Try detecting changes or differences of 
the magnitudes mentioned above as a starting point. 
` For some indicators, the ability to detect a 20% change in means in one year or 
even multiple years might require too many samples and exceed the budget. A network 

http://ian.umces.edu/neea/
http://www.vims.edu/bio/sav/aboutsav.html
http://www.vims.edu/bio/sav/aboutsav.html
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could consider the adaptive-management approach that Channel Islands National Park 
adopted as a starting point for VS monitoring. That park adopted a preliminary goal of 
being able to detect a 40% change in means from year to year, with alpha (Type I error, 
the polluter’s risk) of 0.05 and beta 0.2 (power 80%, the Type II error, the 
conservationist’s risk), with the stated idea that the values could be changed later if 
needed, as lessons were learned. An exact quote, which provides thought process 
documentation, from the CHIS document was  

 
“People who use the monitoring information made these guidelines explicit, based 
largely on concerns about cost and accountability for the nation’s heritage. They 
determined that the park could not afford to detect 5-10% changes and could not 
afford not to detect 50% losses of critical resources, such as endemic species. This 
40% goal was a pragmatic compromise between cost and risk. It was an attempt, 
in an adaptive management scheme, to balance scientific credibility and 
practicality that could be tested and modified in response to experience.” (Davis, 
G. E. 2005. National park stewardship and ‘vital signs’ monitoring: A case study 
from Channel Islands National Park, California. Aquatic Conservation Marine 
Freshwater Ecosystems 15:71-89). 

 
In common situations where one is not trying to protect an endangered species or 

something else especially rare or valuable, it is uncommon to try to detect a biological 
effect size smaller than a 20% change in means, especially in only one year in the highly 
variable world of water column variables. The 20% default is often adopted as a “de 
minimis” (the law cares not for little things) starting point when one cannot logically 
come up with something better, though in water quality it might more often be over 
several years rather than one.. A 1992 paper suggested that it was difficult to find cases 
where a state or federal regulatory agency had prosecuted anyone for a biological effect 
size of less than 20% of the mean on non-human or non-endangered species. This was 
true regardless of whether the population, community, or ecosystem level was being 
considered (Suter, G.W. II, A. Redfearn, R.K. White and R.A. Shaw.  1992.  Approach 
and strategy for performing ecological risk assessments for the Department of Energy 
Oak Ridge Field Office Environmental Restoration Program.  Martin Marietta 
Environmental Restoration Program Publication ES/ER/TM-33, Environmental 
Restoration Division Document Management Center Environmental Report (ER), 
Environmental Sciences Division (ESD) Publication 3906, Oak Ridge National 
Laboratory, Oak Ridge, TN, pp. 8-9).  

Funding limitations should not be an excuse to monitor a large number of sites (or 
a large number of measures) poorly. It would be better to monitor fewer sites and fewer 
vital signs well). Or, as said in more technical terms in the 2006 Southwest Alaska 
Network phase III Monitoring Plan, “It is better to gather sufficient data on a smaller area 
of inference than inadequate data on a larger scale of inference” and “It is better to gather 
data of sufficient quality on fewer vital signs than insufficient data on many of them” 

Again, in water quality, one can sometimes reduce variability by carefully picking 
integrator variables (for example, benthic macroinvertebrates) and by narrowly defining 
Target Populations (for example the populations in riffles only, or on snags only), in 

http://www.nature.nps.gov/im/units/chis/Reports_PDF/Marine/Davis_VS_AquaticCons.pdf
http://www.nature.nps.gov/im/units/chis/Reports_PDF/Marine/Davis_VS_AquaticCons.pdf
http://www.nature.nps.gov/im/units/swan/index.cfm?theme=monitoring_plan
http://www.nature.nps.gov/im/units/swan/index.cfm?theme=monitoring_plan
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narrow index time-periods only). This tends to reduce variability compared to randomly 
sampling water column variables in all habitats at all times of year.  

Reducing variability with narrow definitions of strata, target populations, and 
extent of inference, can helps one achieve more uniform magnitude of variability 
between-years and thus helps one pass the straight-face (common sense) test when 
claiming that the results from samples from multiple years can be lumped before 
estimating a proportion, and still represent a valid single-sample. In done right in context, 
this can facilitates the justification of rotating panel designs that can reduce the number of 
samples needed per year. Reducing variability also helps one detect changes of a size of 
concern. 

Another strategy is to move a continuous monitoring sonde around on a rotating 
panel basis to get required sample sizes and to document temporal variability. In concert 
with oft-repeated generic NPS vital signs guidance, networks should design monitoring 
that produce credible information with available funding, but identify areas for 
expansion. As we deliver value to parks and increase our partnerships, additional 
resources may be available to support a larger program. 

No matter how the quantitative levels are developed, once the MDD or minimum 
detectable ES is developed as our best quantitative estimate of the change that the park or 
network would like to be able to detect, a reality check comparison should be made 
between that value, the current condition, and individual water quality parameter or 
indicator targets needed to help achieve DCs. What is the amount of change it would take 
to get to different levels of compliance with water quality standards or to get to levels that 
would cause a resource collapse (if known)? All such goals should logically reflect park 
management goals. In the park planning process, such a comparison might be made in the 
newer-style NPS resource stewardship plans. 

Monitoring networks should usually try to be precautionary by using starting beta 
levels of 0.05 to 0.1, if standard null hypothesis significance testing (NHST) is 
envisioned. The other alternative if sample size is smaller than 30 would be to estimate 
needed sample sizes and power using the more precautionary inequivalence test rather 
than standard NHST.   

In any case, the starting point MDD can be changed to a different % based on 
park protection goals or ecological and other lessons in an iterative (adaptive 
management) fashion. For example after initial pilot data is gathered and initial MDDs 
are estimated, these may change later as more data and real-world experience is 
accumulated, and/or as statisticians later provide more advanced ways to look at MDDs, 
power, and needed sample sizes. 

9) What Initial Statistics Will Be Used? 
 
Do the questions to be answered call for detecting A) a difference between two 

means, B) a difference between a mean and a water quality standard, C) a trend (over 
how many years), or D) an estimation such as a confidence interval (CI) about a mean or 
a proportion? Will parametric or nonparametric statistics be used? Are there nondetects? 
The answer to these questions will help drive which statistics will be used and how 
sample sizes are calculated. See Which Test Do I Use? Statistics chosen should be 
documented in a data analysis SOP. 

http://www.practicalstats.com/which/index.html
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10) Choose Desired Confidence/Detection Probability (Power = 1-beta) 
 
What is the degree of confidence we want to have in detecting our chosen change 

magnitude of concern? This is a decision for park and other NPS staff to make with the 
help of the network quantitative ecologist. Do we want to have 80%, 90%, or 95% 
confidence that we can detect a defined change-magnitude of concern? The decision may 
vary with rareness and special value of the resource being protected, how pristine the area 
is, or the variability of the vital sign or measure. For a measure that is highly variable 
even in a variability-reducing stratum, it may difficult or impossible to detect a 20% 
change over one year or even multiple years with 90% confidence.  

 Typically the network would work with a NPS quantitative ecologist (and later 
with a statistician) in an iterative manner to decide workable probability of detection 
percentages. In other words, once an initial decision has been made about desired 
probability of detecting the effect size of concern, it is typically necessary to run the 
numbers to determine the actual probability of detecting an effect size of concern given 
the monitoring design, the variability of the parameters, the statistics chosen, and other 
factors discussed herein. If the detection probabilities turn out to be unacceptably low, 
changes in the overall monitoring design, analytes to be measured, sample sizes, sample 
locations and strata, sample timing, etc. may have to be made. It is common to have to 
repeat sample size calculations several times before satisfactory compromises between 
power, budget, and choice of effect sizes can be made. 

Use past data to get the best estimate you can find for standard deviations or 
variances to use in the power and sample size calculators. The dreaded post-hoc power 
prohibitions are not an issue here because the scenario is not the situation where one is 
“after the fact, doing a power analysis for the effect observed in the study.” This scenario 
of planning future monitoring is more acceptable because. (Ken Gerow, University of 
Wyoming Statistics Department, Personal Communication 2007):  

 
(1) Any data set can be thought of a “preliminary” in that it stands as fodder for future 

work. 
(2) It is indeed better to have (our best available) estimates of SD and so on (which 

requires preliminary data). 
(3) Post-hoc simply means (“after”) which sounds in fact like the right thing to do (if you 

take my points (1) and (2) as valid. So it is perfectly fine (good, even) to do post-hoc 
power analyses in this particular scenario of looking at past monitoring estimates to get 
the best possible estimates of variability to help plan for future monitoring. 
  
In standard null hypothesis significance testing (NHST) scenarios, the degree of 

confidence we have in detecting a change of a certain size (a defined minimum detectable 
difference--MDD) is the same as statistical power, and correlates very highly with sample 
size. That is because at higher and higher sample sizes, lower and lower differences can 
be detected. 

In a standard NHST scenario, a ninety % confidence might also be expressed as a 
power of 0.90 (1-beta when beta is 0.10 or 10%). Expressed as a %, we would say the 
statistical power is 90%. Power is most useful in pre-monitoring planning, to be able to 
state (for example) that the study was designed to be able to regularly detect a certain 
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magnitude of change (say a 20% change in means) a certain % (say 90%) of the time. 
Another way to express is it that we have designed the study before doing it to limit beta 
to 10%, so 90% of the time we will not make a false negative conclusion that there is no 
effect of the stated size when in fact there is an effect of that size.  

The McBride probability of detection calculator clarifies that power (1-beta) is 
treated the opposite for standard NHSTs vs. the more precautionary (especially at smaller 
samples sizes, see second paragraph below) inequivalence tests. In inequivalence testing, 
the burden of proof is shifted towards the polluter and away from the conservationist, 
though at very large sample sizes with good control of power, standard NHST (tests) can 
become quite precautionary (McBride calculators): 

 
In most cases the “detection probability” is akin to the test's "Statistical Power" 
(the probability that the tested hypothesis of no difference will be properly 
rejected when it is in fact false). For testing the hypothesis of inequivalence, the 
analogous concept is the test's "Operating Characteristic" [the probability that the 
tested hypothesis (inequivalence) will not be falsely rejected]. So there are two 
differences: 1) inequivalence vs. equivalence, and 2) whether or not the tested 
hypothesis will or will not be rejected. These mental gymnastics, however, allow 
the inequivalence “Operating Characteristic Curves” to be fully analogous to the 
power curves for the more familiar null hypothesis significance testing (NHST). 
As pointed out by McBride in a help file off his calculator, the operating 
characteristic can be thought of as “the frequency with which a correct hypothesis 
(of inequivalence) will be accepted”, and to accept the inequivalence hypothesis is 
to detect a truly important difference, which requires high values for the 
“operating characteristic.” 
 
At sample sizes below 25-30, an inequivalence test should be the precautionary 
default-first choice of the National Park Service, which after all, is in the business 
of protecting rare and special resources for future generations. When sample size 
is above 30, the more familiar standard NHST tends to have a power no less than 
90-95%, and if properly executed and interpreted, therefore becomes an 
acceptable alternative as one line of evidence in multiple lines of evidence 
assessments. More detail: 
 

As clarified in Section 5.3.3 of the McBride statistics book, at small 
sample sizes (such as sample size of less than 25) and an equivalence 
interval effect-size of the magnitude of half of the standard deviation, the 
standard NHST (test) is neither as permissive as the test of the equivalence 
hypothesis nor as conservative as a test of the inequivalence hypothesis. 
However, at large sample sizes (such as n = 50 to 100, the null hypothesis 
test (NHST) routinely becomes very conservative, routinely detecting 
even small differences, and its detection probability is everywhere 
(different combinations of effect sizes and sample sizes) higher than that 
of the inequivalence test. If these concepts seem too difficult, have your 
local applied water quality statistician help you sort them out. 
 

http://www.niwascience.co.nz/services/free/statistical
http://www.niwascience.co.nz/services/free/statistical
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471470163.html
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If hypothesis testing is not done, but estimation (say of a confidence interval 
about a mean or proportion, see step 12) is done instead, the degree of confidence is 
typically expressed by the magnitude of the confidence interval rather than beta, but care 
should still be taken to assure adequate sample sizes (See “Confidence Intervals about 
Means.” 

11) Choose Significance Level (alpha) 
 
What is the desired probability (1-significance level = 1-alpha) to avoid falsely 

detecting a change or difference of the magnitude of the MDD (probability of type I 
error, the polluter’s risk)?   

Too often what looks like science---choosing an error rate for a statistical test for 
water quality assessments---is an unrecognized public policy decision (Shabman, L. and 
E. Smith. 2003, Implications of Applying Statistically Based Procedures for Water 
Quality Assessment.” Journal of Water Resources Planning and Management, 29(4): Pp. 
330-336, see rest of quote and related discussion on page 176 of McBride statistics book). 
In the p-value culture of many journals in the past, significance level (alpha) has 
traditionally been set at 0.05. In the p-value culture of many journals in the past, 
significance level (alpha) has traditionally been set at 0.05. Although recently there have 
been many articles explaining why automatically doing this (and over-reliance on p 
values and NHST tests in general) is not a good idea, the culture persists. For more 
information on the problems, see Part B and some of the many recent discussions, such as   
 

Stefano et al. 2005, Effect size estimates and confidence intervals 
 
S. Rigby. 1999. Getting past the statistical referee: moving away from P-values 
and towards interval estimation  
 
B.D. Mapstone. 1995. Scalable Decision Rules for Environmental Impact Studies: 
Effect Size, Type I, and Type II Errors. Ecological Applications 5 (2). 
 
J. Gliner et al. 2001 Null Hypothesis Significance Testing: Effect Size Matters 

 
When doing inequivalence testing, alpha = 0.05 is a fine default. For other types 

of testing, the NPS is typically even more concerned with false negatives (wrongly 
concluding no impact or no change when a change or impact has, in fact, happened) than 
false positives (wrongly concluding impact or change when a change or impact has not 
happened). Therefore, network quantitative ecologists may at times specify small beta 
levels, even if they are smaller than alpha (see Part B for more details).  

Keep in mind that equivalence testing is not all that precautionary (the 
conservationist risk, type II errors) unless sample size is high (Practical Stats January 
2007 Newsletter).  Accordingly in the NPS, we wouldn’t ordinarily recommend 
equivalence testing, but would instead tend to favor inequivalence testing, which tends to 
be more precautionary at small sample sizes than standard NHST testing [especially in 
null hypothesis scenarios where only alpha (and not beta)] are constrained to very low 
levels (such as the traditional 0.05 for alpha). 

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471470163.html
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://www.latrobe.edu.au/psy/cumming/docs/Di%20Stef%20Fidler%20et%20al%20Nova%2005.pdf
http://her.oxfordjournals.org/cgi/content/full/14/6/713
http://her.oxfordjournals.org/cgi/content/full/14/6/713
http://links.jstor.org/sici?sici=1051-0761(199505)5%3A2%3C401%3ASDRFEI%3E2.0.CO%3B2-A
http://www.warnercnr.colostate.edu/NRRT/people/vaske/06_methodology/3_effect_size_practical_significance/null_hypothesis_significance_testing_effect_size_matters_gliner_et_al_2001.pdf
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://www.practicalstats.com/news/newsaes/files/Jan07EquivTests.pdf
http://www.practicalstats.com/news/newsaes/files/Jan07EquivTests.pdf
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Unless one was using an inequivalence test, instead of blindly insisting that alpha 
always be 0.05 according to tradition, monitoring planners might choose 0.1 or 0.2 for 
alpha. Beta might then be 0.05 or even 0.01. As a resource conservation agency which 
typically desires to be precautionary in protecting rare and/or highly valued resources, the 
NPS should not be less worried about beta (the conservationist’s risk) than the alpha (the 
polluter’s risk in standard null hypothesis test). Therefore, consider choosing 
inequivalence tests rather than standard null hypothesis tests at smaller (less than 25) 
sample sizes 

12) Use Simple Calculators to Make Initial Estimates of Required Sample Sizes 
 
Due to recent breakthroughs, it is now easier for quantitative ecologists to use 

sample size equations and calculators on the Internet to get a rough idea of sample sizes 
needed. Power should not be ignored, so be sure that any minimum detectable difference 
(MDD) calculator used has inputs not only for alpha, but also for beta (1-power) and for 
the standard deviation (SD) or variance). If ES calculators are used as a first step, be sure 
the calculator has inputs for alpha AND for beta (1-power) and follow up with MDD 
calculators to look from a better angle when a SD is available. 

One typically does sample size calculations in an iterative manner, trying various 
samples sizes until the answer stabilizes (rounds up the same whole number) and/or by 
playing what-if games. If one already has a starting sample size, the McBride probability 
of detection calculator can also be used to estimate the effect size that can be detected 
with various sample sizes, probabilities, stated significance levels, and various types of 
tests. Start by clicking on the effect size button and then choose either one or two groups.  
 

CAUTION: There are many sample size and power calculators on the Internet. 
Before using them, we suggest checking them against Zar’s examples to make 
sure you can get the right answers. Some of the Internet calculators appear to use 
the wrong equations and/or give the wrong answers. One used the two-sided 
critical t-value instead of the (correct) one-sided critical t-value for power. Also, it 
is easy to misunderstand some of the input variables or their format, which is why 
detailed step-by-steps are given in Part B. As will be repeated for emphasis, 
hypothesis test sample size estimators that don’t take into account power (1-beta, 
or analogous probability of detection for inequivalence tests) rates should not be 
used unless otherwise justified. 
 
Step-by-step examples on how to use some of the more user friendly Internet 

calculators to get the same answers as the Zar examples are summarized below and in 
more detail in section IV-C of Part B.  

Simple sample size calculators provide just rough (but far better than nothing) 
starting point estimates of needed sample sizes. Some would argue that the same is true 
for more complex simulation approaches. 

Perform Different Initial Simple Calculations Depending on the 
Scenario: 
 

http://www.niwa.co.nz/services/free/statistical
http://www.niwa.co.nz/services/free/statistical
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
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We recommend estimating sample sizes needed with a multi-step approach. No 
matter how one is estimating required sample sizes, it is important to keep documenting 
and checking assumptions at each step along the way. Calculations for sample size 
requirements, like all inferential techniques, are based on certain assumptions. Be sure to 
discuss assumptions in eventual discussions with an applied statistician (step 16). 

The first few steps listed below relate to hypothesis testing, since these tests are 
still commonly used and since many are familiar with them and with the Zar equations 
(details below). This does not imply that standard null hypothesis significance testing 
(NHST) should be a first choice for analysis. In fact, the standard null hypothesis test 
(especially when power is not controlled) is most often not the only good choice or the 
optimal choice for ecological field work.  

For a recent balanced review of the pros and cons of NHST versus common 
alternatives, see R. S. Nickerson. 2000. Null hypothesis significance testing: A review of 
an old and continuing controversy. Psychological Methods, 5:241-301. Among the 
conclusions therein: 1) All statistical tools have use in our tool box, but all are also 
subject to misinterpretation and misuse, 2) There are many choices beyond just Bayesian 
or not, that two-way split is much too simple, 3) confidence intervals (and most other 
alternatives, including Bayesian alternatives, are also prone to misuse and 
misinterpretation, 4) in spite of vehement criticisms of NHST (many of which were really 
about misuse rather than about proper use), it remains the most popular tool used in 
psychology papers, 5) There is a need to be careful with terminology and what is said in 
interpretation. For example, many of what is said about alpha, beta, and confidence 
intervals, even in some statistics textbooks, is either at worst flat-out wrong or at best 
potentially misleading, 6) one reason for doing pre-hypothesis test calculations (including 
power and needed sample sizes) is to assure adequate sample sizes [which usually proves 
helpful when data is used for other purposes (confidence intervals, etc.) too], and 7) 
Although the likelihood that a true null hypothesis will be rejected does not increase with 
the sizes of the samples compared, the likelihood that a real difference of a given 
magnitude will result in rejection of the null hypothesis at a given level of confidence 
does. It is also the case that the smaller a real difference is, the larger the samples are 
likely to have to be to provide a basis for rejecting the null. In other words, whether or 
not one assumes that the null hypothesis is always or almost always false, when it is false 
the probability that a statistical significance test will lead to rejection increases with 
sample size. 

Although aimed at psychologists rather than ecologists, among the many other 
quotes Nickerson (op.cit. just above) made that were of particular interest were several 
from Abelson, who (through a series of papers) acknowledged issues with null hypothesis 
significance testing (NHST) but also defended certain judicious and careful use of NHST 
under certain well justified scenarios (proper calculations, checked assumptions, only one 
line of evidence, etc.). Among these various Abelson quotes were the following (see 
Nickerson op.cit. for full citations):   
 

1) If a legal case were being brought against the significance test, the charge here 
would be that the test is an 'attractive nuisance,' like a neighbor's pond in which 
children drown. It tempts you into making inappropriate statements, 

 

http://www.usq.edu.au/users/patrick/PAPERS/null%20hypothesis.pdf
http://www.usq.edu.au/users/patrick/PAPERS/null%20hypothesis.pdf
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2) All statistics, in his (Abelson’s) view, should be treated as aids to principled 
argument. He saw NHST as not the only, but an essential, tool in the researcher's 
kit: "Significance tests fill an important need in answering some key questions, 
and if they did not exist they would have to be invented." 

 
3)  Even though a single study cannot strictly prove anything, it can challenge, 

provoke, irritate, or inspire further research to generalize, elaborate, clarify, or to 
debunk the claims of the single study. 

 
4) Whatever else is done about null-hypothesis tests, let us stop viewing statistical 

analysis as a sanctification process. We are awash in a sea of uncertainty, caused 
by a flood tide of sampling and measurement errors, and there are no objective 
procedures that avoid human judgment and guarantee correct interpretations of 
results. 

. 
 The Nickerson summary (op.cit.) also contains many other quotes of others plus 
some original statements that are noteworthy. Among the interesting statements of special 
interest to those doing biomonitoring were the following (see Nickerson, op.cit for 
original citations and context): 
 

1. Estes has pointed out that statistical results are meaningful only to the extent that 
both author and reader understand the basis of their computation, which often can 
be done in more ways than one; mutual understanding can be impeded if either 
author or reader is unaware of how a program has computed a statistic of a given 
name. 

 
2. Some point out that many of the criticisms of NHST are not so much criticisms of 

NHST per se but criticisms of some of its users and misuses. It is not the fault of 
the process, they contend, if some of its users misunderstand it, expect more from 
it than it promises to deliver, or apply it inappropriately. 

 
3. Beta is simply the probability of failing to reject the null hypothesis, given that it 

is false. 
 

4. Statistical tests, at least parametric statistical tests, invariably rest on certain 
assumptions. Student's t test and the analysis of variance (ANOVA) involve 
assumptions regarding how the variables of interest are distributed. Student's t, for 
example, tests the hypothesis that two samples of measures of interest were 
randomly drawn from the same normally distributed population with a specific 
variance. However, neither the shape of the population of interest nor its variance 
is typically known. It is often simply assumed that the distribution is normal and 
the variance is most often simply is estimated from the sample values. For 
application of the test to be legitimate, the samples should be normally distributed 
and they should have roughly equal variances. 
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5. Procedures have been developed for determining whether samples meet the 
requirements and for transforming the raw data in certain ways when they do not 
meet them so they will. The degree to which researchers ensure that data satisfy 
all the assumptions underlying the significance tests they apply to them is not 
known; my guess is that it is not high. 

 
6. The width of a confidence interval is generally a random variable, subject to 

sampling fluctuations of its own, and may be too unreliable at small sample sizes 
to be useful for some purposes. 

 
7. The use of point estimates and confidence intervals ("error bands") predates the 

development of NHST. Cohen's (1994) surmise is that the reason they are not 
reported is that, at least when set at 95% to correspond to a .05 alpha level, they 
typically are embarrassingly large. 

 
Before doing statistical tests, looking at data from different angles, as part of 

exploratory data analysis (EDA), including summary statistics and simple plots, is always 
a good idea as it sometimes reveals important information not otherwise immediately 
apparent, as well as suggesting which types of tests or other analyses might be optimal.   

Looking at results from subsequent additional tests and analyses is a further way 
to look at the results from different angles. Try to assemble numerous lines of evidence. 
For example, when looking at trends in pH in water, one might perform a seasonal 
Kendall nonparametric test for trends, and plot the data to see if there is a hint of a slope 
(and/or do a regression test to see if the slope is different than zero), and do a t-test (or 
nonparametric analog for parameters other than pH which is already transformed) to 
compare say one 25 year period to the next 25 year period, and do a sample size estimates 
to make sure sample sizes were adequate to ensure needed amounts of statistical power 
(detection probabilities). If sample sizes were high enough, one might also perform 
inequivalence tests. The point is that if several or a majority of different lines of evidence 
support a trend for pH, these multiple lines of supporting evidence would be more 
convincing than any one line of evidence by itself. Null hypothesis tests have come under 
fire in recent years, but if done with sufficient power as one of several lines of evidence 
(rather than being considered definitive as stand-alones), they can add information value. 
Two lines of supporting evidence would typically be considered more convincing than 
one, three more convincing than two, etc.  

Even when inequivalence tests or other good options involving controlling power 
are chosen, single test results are often not definitive by themselves and typically should 
be used only as one of many lines of evidence considered in ecological resource 
management decisions. 

Nevertheless, parks often want to compare results from one site to another or from 
one time period (say one 5 year period of drought) to another time period (for example 5 
relatively wet years). Sometimes parks even want to compare one year to the very next. 
More often, if they visit plots two years in a row and then rest them for several years in a 
rotating sampling approach, they might wish to compare the average of these two year 
periods to the next two year sampling period. In several of these scenarios, the first few 
items below are relevant for estimating needed sample sizes.  
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Observed to expected (O/E) ratios tend to be normally distributed and sample 
sizes can be calculated with standard calculators such as the ones summarized below. If a 
NPS VS monitoring network is developing a network assessment or network O/E 
predictive model, the number of sites is the level of replication and emphasis should be 
placed on sampling a sufficient number of sites to improve regional. Replication at a site 
or reach may be required for the following reasons: 1) to find variability at a single site, 
2) to get confidence interval size down to a reasonable % of the O/E ratio, and/or 3) to 
improve the ability to detect small changes.  
 

Note: Other things being equal, pristine sites, or those with little human influence, 
tend have smaller variability than impacted ones, which helps when one is trying 
to detect small changes (for more information, see S.J. Nichols, W.A. Robinson 
R.H. Norris. 2006. Sample Variability Influences on the Precision of Predictive 
Bioassessment. Hydrobiologia). 
 
Before using calculators, it is very important make sure you understand exactly 

how to input variables need to be formatted and entered and check some example 
problems where the correct answer is known before proceeding.  

It is also a good idea to perform multiple calculations from the options listed 
below to “look at the issue from multiple angles” and to see if they are all close. If they 
are not, an input variable may be wrongly formatted. If they are close, take the highest 
sample size estimate to be precautionary, in the absence of a better rationale. 

Sample Size Calculations for Nonparametric Procedures 
 
Most of the sample size (and related power) calculators use the t-distribution and 

assume normality (of the sampling distribution of the means, not of the distribution of 
values themselves). What if assumptions are not met and nonparametric tests will be 
used? Nonparametric sample size and power estimators are not easily available. 

Most experts have suggested that the power and sample size requirements for 
nonparametric tests are usually not all that different than those for parametric tests. Some 
suggest that one could use the parametric calculators for first estimates of sample size and 
then add a small amount (perhaps 5-10%) to be precautionary if one is unsure of the 
normality of the distribution being sampled. The initial sample size estimates are usually 
rough anyway, and if one wanted really exact values, and if one had a large sample size 
truly representative of the Target Population, one might go to more complex methods 
(such as simulation) to estimate sample sizes. 

Others see adding a small amount to the sample sizes for use in nonparametric 
tests as unnecessary, since field environmental data is usually badly skewed. They point 
out that when the assumptions of the t-test are badly violated, the Mann-Whitney test has 
more power than those tests that require assumptions of normality (Zar, op.cit). The 
Wilcoxon Sign Ranks test for two independent samples has about a 95% efficiency 
compared to a t-test when the distribution is normal. See Part B for more additional 
documentation and detailed information for different multipliers for different 
nonparametric tests in the unlikely case that one runs across normally distributed 
distributions in environmental sampling 

http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
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However, as pointed out by Johnson in 1999, if available past data is marked by 
small sample size or questionable representativeness (almost always the case), even for 
normally distributed data, the parametric sample size calculators, even those with inputs 
for alpha, beta, and delta (detectable differences) often underestimate required sample 
size, partly since available estimates for variance are often not a good reflection of true 
variance in the underlying Target Population (Johnson, D. H. 1999.  The insignificance of 
statistical significance testing. J Wildl Mgmt 63:763-772.). Therefore, increasing the 
sample size a bit to be precautionary is not a bad idea even for parametric sample size 
calculators. 

A related strategy that EPA uses in CERCLA sites to prevent underestimating 
variability is to use a 80 or 90 percent upper confidence limit for the estimate of the 
standard deviation rather than an unbiased estimate to avoid underestimating the true 
variability (EPA 2002, Guidance for Comparing Background and Chemical 
Concentrations in Soil for CERCLA Sites) 

Many investigators use the t-distribution calculators for data that is log-normally 
distributed and then log transform environmental values before using parametric tests, 
especially when sample size is above 20-30. However, this should not be an automatic 
choice. Sometimes nonparametric analyses are a better choice, and simulation can 
sometimes do a better job of estimating needed sample sizes. Also, be careful to avoid 
back transformation bias. If the mean is the main focus and the test is to be done on 
transformed values, then run the sample size estimators with transformed values, and 
don’t report back transformed means, standard deviations, minimum detectable 
differences MDDs in means, or variances. MDDs in geometric means (medians) can be 
used. 
 

Note: Again, the key point is that back transforming a log mean gives the 
geometric mean, which estimates the median (not the mean!) of the original units 
assuming the logs are symmetric. If logs are nearly symmetric, sample size 
calculations in log units will be a good approximation to true nonparametric 
sample size estimators (Dennis Helsel, USGS, Personal Communication, 2006). 

 
The Helsel and Hirsch text book (Helsel, D.R. and R.M. Hirsch. 2002. Statistical 

Methods in Water Resources. US Geological Survey Techniques of Water Resources 
Investigations) does not go into sample size calculations in detail. However, chapter 4 
provides good detail on using nonparametric hypothesis tests, even with small sample 
sizes. 

Before a Good Estimate of the Standard Deviation is Obtained: 
 

If a hypothesis test is to be used, perhaps as one line of evidence in a multi-lines 
of evidence approach, we suggest starting sample size estimation with the McBride 
detection calculator. This is a good first step since: 1) it allows one to make initial 
estimates of sample sizes if there is no (or no good) estimate of variability, and 2) it 
allows one to look at probabilities of detection of various effect sizes in not only NHST t-
tests but also in the generally precautionary and more optimal inequivalence tests, and the 
less precautionary equivalence tests. It also allows for either paired or not-paired 

http://science.nature.nps.gov/im/monitor/docs/JOHNSON.PDF
http://www.epa.gov/oswer/riskassessment/pdf/background.pdf
http://www.epa.gov/oswer/riskassessment/pdf/background.pdf
http://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3.pdf
http://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3.pdf
http://www.niwascience.co.nz/services/free/statistical
http://www.niwascience.co.nz/services/free/statistical
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sampling estimates.  Impacts may change not only means but also SDs (more impact 
often leads to more variation). Therefore, it is not a bad idea to pay close attention to 
changes in standard deviations (SDs) and in changes expressed as a percent of a SD. In 
the McBride calculator, remember to express effect size as a percent of the standard 
deviation in the calculator input. So, if ES = difference/SD = 0.69, express the effect size 
as 69%. Be sure the SD used is a best estimate of true heterogeneity of different samples, 
not generated from repeat sampling of a single sample. For a plain-language step-by-step 
for how to use the McBride calculators, see section on Inequivalence testing. 

After a Good Estimate of the Standard Deviation is Obtained: 
 
Once one has a decent estimate of a SD, do another quick calculation based on 

Zar’s equations (Zar, J. H. 1999. Biostatistical Analysis. Prentice Hall, Upper Saddle 
River, New Jersey, USA). Many of these are discussed below. 

Sample Size Needed to Detect a Defined Difference between Two Means 
 
The following section explains how to compute the sample size needed to detect a 

pre-determined magnitude of minimum detectable difference (MDD, expressed in 
original units of measure) between two means. Here one assumes that someone has made 
a decision that they want to be able to detect a difference of a given magnitude (say 20 or 
40 or 50%) between two means. The example here assumes the two samples being 
compared have similar amounts of variability (= similar variances or similar standard 
deviations) and equal or very close to equal sample sizes.  

For this scenario, one can use Zar’s (1999) equation 8.22. Planners may be able to 
use an Internet calculator after confirming they give the same answer as Zar provided  

 
Using the Gerow Calculator to Get Zar’s Answer: 
 
When checked in 2006, the Gerow calculator gives the same answer (45 for each 

sample) as Zar gives in example 8.4 (page 134, Zar 1999) for equation 8.22. Here is the 
step-by-step method for the Gerow Calculator to replicate the Zar answer of 45 (starting 
at the upper left hand corner of the Gerow Calculator): 

 
1. Set alpha to 0.05 with the slider bar, then immediately below that 
2. Toggle to the two-sided test option, then move down and 
3. Toggle to the “increase” option, then move down and 
4. In the null mean box, type in one mean (use 1 for Zar example) 
5. Then move the “Size of Difference” slider bar until 1.5 appears in the box 

for alternate mean (this uses the Zar example), then just below 
6. Move the arrows in the “Variation Choices” Box until the Constant SD 

choice appears (for equal variances), then just below that 
7. Type in 0.721 in the “estimate of SD” box,  
8. Below the box where you have entered 0.721 there is another box, type in 

zero, then move to right and 

http://www.statsalive.com/resources.html
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9. Move the arrows in the spin button for “Design Choices” until 
“independent, equal sample sizes” (the Zar choice) appears, then just 
below that 

10. Move the Sample Size Slider with the arrows until the desired power 
(90%) appears in the power answer just above (and a bit to the right) of 
the center of the Design Choices Box. In this case either sample sizes of 
44 or 45 correspond to 90% power, so choose 45 to be conservative (45 is 
also Zar’s answer, so one can see that input choices above were correct). 
Thus the highest sample size at which power is still 90% and not 91% is 
the answer to be used (keep toggling until 91 appears, then toggle back 
one step until the highest number associated with 90% power, in this case 
45, appears). 
 
Note: The vague notion that estimates of standard deviations and means 
both tend to become more accurate as sample size increases is not a 
reason to choose “Standard Deviations Proportional to the Mean)” in the 
Gerow Sample Size and Power Calculator. Frequently a better reason is 
simply that for BIOLOGICAL datasets, variation (sometimes on the scale 
of SD, sometimes on the scale of variance) is often proportional to means. 
When one has enough data, one should determine proportionality of the 
SD vs. the mean and choose options accordingly. 

 
Variations on the theme: The Gerow Calculator allows one to easily play 
“what if” games with the options. If only one thing is varied from the above, 
we can learn the following: 
 

If the only change from the above step-by-step is choosing “Standard 
Deviations Proportional to the Mean)” rather than “Constant SD” (step 6), 
the sample size required jumps from 45 to 73 to get the same 90% power.  
 
If the only change from the above step –by-step is choosing “Variances 
Proportional to the Mean” (also sometimes the case), the sample size 
required jumps even a bit higher, to 77 to get 90% power. A conservative-
safe choice is to try several of these options if one is not too sure which 
one fits the best (say because sample sizes are small and one is not too 
sure if the SD or variance is proportional to the mean, and then pick the 
highest estimated sample size derived from the various options. 
 
What if sample sizes are known or suspected to end up unequal? If the 
only change from the above step-by-step is choosing “independent, 
unequal sample sizes” rather than “independent, equal sample sizes” but 
SDs are still equal, and if we choose sample size of 45 for the first sample 
to be comparable to the Zar, case, we see that if the second sample was 30 
rather than 45, power would decrease to 83%. To get a power of 90%, one 
has to toggle sample two up to a sample size of 45. These types of 
calculations can help with “completeness” goals. In other words, if one 

http://www.statsalive.com/resources.html
http://www.statsalive.com/resources.html
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needs 45 samples for power, one often needs to aim for more than that (by 
10% or more) knowing or suspecting that some will fail due to various 
real-world field factors (extreme weather, instrument losses, etc.) and/or 
some QC failures that would tend to make some of the data unusable. 
 

Using the McBride Detection Calculator to Get Zar’s Answer: Use Zar equation 
8.22. Here is the step-by-step method to replicate the Zar answer of a sample size of 45: 

 
Choose the Point-null option, (which is always two-sided), then choose the two-
group option, click on n to solve for sample size, then: 

 
1) Type in alpha as 5 (corresponds to 5% or a significance level of 0.05), 
then  
 
2) Type in detection probability as 90 (for 90% power),  
 
3) Type in effect size magnitude as 69.3 (corresponds to 69.3% of one 
standard deviation sample = effect size expressed as a % of the true 
Standard Deviation). Details on how we got to 69.3: 
 

Since effect sizes in the McBride calculator are expressed as 
percentages of the magnitude of the standard deviation (SD), to get 
from the effect size in original units (0.5) to effect size to effect 
size a % of the standard deviation, we first convert the effect size 
from 05 in the Zar example to a SD percentage with the equation 
effect size = 100*(1.0/standard deviation). MDD/SD = 0.5/0.721 = 
0.693 = ES as a fraction of the SD. How we got 0.721: Zar gave 
the variance as 0.52, so the SD = the square root of 0.52 = 0.721. 
 

4) Then click on calculate and to be precautionary, choose the larger of the 
two values (45, the same answer Zar gave), for variance unknown. 
Although we have a rough estimate of the variance (0.52), the true 
population variance is seldom truly known with great accuracy, so chooser 
the higher sample size to be precautionary. 

Sample Sizes Needed for Differences between Two Means When 
Using Paired Sampling 
 

This section describes how to compute the minimum sample size needed to detect 
a pre-determined magnitude of difference (minimum detectable difference = MDD 
between two means when PAIRED SAMPLING is being used. One advantage of paired 
sampling is that one can often get a higher amount of power at lower sample sizes than 
for sampling that is re-randomized each year.  

Often the paired sampling options make sense for comparing different time 
periods at judgmentally picked sites, where one is taking repeated samples at one site 
year after year. Comparisons could be for samples from one year to samples the next year 

http://www.niwascience.co.nz/services/free/statistical/detection
http://www.niwascience.co.nz/services/free/statistical/detection


 94

if sample size is large enough (use the paired versions of the calculators to see if sample 
size is large enough). 

 
Scenario 1: The samples have equal (or similar) variances, SDs, and sample 
sizes:  
 
For this scenario one can use Zar’s example (the step-by-step is just above) and 

make all inputs to the Gerow Calculator “constant SD” option exactly the same except for 
step 9 and 10. Do the following for steps 9 and 10: 

 
Move the arrows in the spin button for “Design Choices” until “paired sampling” 
appears, then just below that 
 
Move the Sample Size Slider with the arrows until the desired power (90%) 
appears in the power answer above the Design Choices Box. In this case, a sample 
size of 28 is seen correspond to 90% power, so the required sample size answer is 
28. The smaller sample size of 28 is needed instead of 45 when the only input 
change is to choose “paired sampling” rather than “independent, equal sample 
sizes.” Planners often decide to do paired samples (which are relevant to non-
probabilistic-judgmental designs where one is going back to a certain site each 
year). As can be seen in our example, paired samples typically have the advantage 
of requiring fewer samples (providing more statistical power for the same sample 
size. 
 
However, keep in mind that paired samples are not a “cure-all.” Using paired 
samples does not insulate one from problems related to small sample sizes or 
asymmetric distributions. “Power decreases as the variance increases, decreases 
as the significance level is decreased (i.e., as the test is made more stringent), and 
increases as the sample size increases. A very small sample from a population of 
paired differences with a mean very different from 0 may not result in a 
significant t test statistic unless the variance of the paired differences is small. If a 
statistical significance test with small sample sizes produces a surprisingly non-
significant P value, then a lack of power may be the reason. The best time to 
avoid such problems is in the design stage, when appropriate minimum sample 
sizes can be determined, perhaps in consultation with a statistician, before data 
collection begins” (Northwestern University Discussion of Do your data violate 
paired t test assumptions?). 
 
Both the McBride sample size calculator and the Gerow calculator give one the 

option of estimating sample sizes for paired samples, either when variances are or are not 
equal. 

Using units expressed as % of the true population standard deviation (rather than 
original units of measure) one can also compare sample sizes needed and statistical 
power using the McBride equivalence detection probability calculator. The equivalence 
option needs to be initially chosen so that one can eventually get to the inequivalence 
option. However, output answers are given in a format which allows easy comparisons 

http://www.statsalive.com/
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#P value
http://www.basic.northwestern.edu/statguidefiles/ttest_paired_ass_viol.html
http://www.basic.northwestern.edu/statguidefiles/ttest_paired_ass_viol.html
http://www.statsalive.com/resources.html
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for power produced at given sample sizes for three cases: 1) equivalence testing, 2) 
inequivalence testing, and 3) standard null hypothesis significance testing. Paired vs. not-
paired options can be selected as part of the first input prompts. 

Other tips on using the paired version of the calculator (Ken Gerow, University of 
Wyoming Statistics Department, Personal Communication 2007):  
 

If you don’t know whether or not the mean is proportional to the variances, one 
can often choose the affirmative option (mean is proportional to the variances) as 
a first choice. Then just enter in the observed mean, and the ratio (mean/variance) 
as an estimate of the proportional relationship. Since you are not yet sure of the 
relationship, however, bracket the estimates of sample size with the answer from 
another option. In other words, also try the option for “proportional SD” as 
another flavor of “variation changing with means.” With no evidence (i.e. not 
enough data) with which to choose between proportional variances and 
proportional SDs, trying both and (perhaps) choosing the one that yields 
conservative sample sizes (i.e. larger) would be a “safety first” approach. 

Sample Sizes for Two Samples, Variances Unequal 
 
It would not be unusual for a standard deviation (SD) to be different in one time 

period versus a later time period or between different sites. If one has unequal variances, 
one will also have unequal SDs and one can use the Gerow calculator. One simply 
chooses “different SDs” in the variation choice box, and then types in the SDs for each 
sample in the field provided.  

The Gerow calculator is a free MS-Excel macro [right click the sample size/power 
calculator box to download the .xls (Excel format) macro file to your computer] and then 
choose “save as” to save the file to a location of your choice in your computer. The 
Gerow macro includes options for the following (often-relevant) scenarios: 1) paired 
samples, 2) either SD or variance proportional to the mean, 3) for different sample sizes, 
and 4) either equal or unequal variances. This more-advanced calculator includes 
instructive example plots in help screens. Be sure to read the help screens carefully as the 
input variable choices are not quite as quickly understood as some of the other calculators 
mentioned above. An advantage of Gerow’s calculator is the extra options. In real-world 
aquatic biology datasets, standard deviations (SDs) are often proportional to the mean or 
variance. The Gerow calculator provides a way to easily draw graphs on the SD/mean 
and variance/mean comparisons to get hints about which may be true. However, if still 
not sure (perhaps sample size is just too small to establish good relationships, Gerow 
suggests that one could calculate the sample size with the multiple options and then 
choose the largest sample size answer to be conservative. In the real world where some 
samples fail, sample sizes are often not equal, and the Gerow calculator also has inputs 
for sample size not being equal if one chooses independent samples (not paired) in the 
design choices box. 

More information on the Gerow calculator and choices therein are found in a free 
download discussion paper associated with the calculator. Among other things, the 
discussion paper explains why choosing a small sample size for the first year of data 
collection can greatly limit statistical power that can be achieved in subsequent power 

http://www.statsalive.com/resources.html
http://www.statsalive.com/resources.html
http://www.statsalive.com/LinkedDocuments/power%20&%20SS.pdf
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calculations. Bottom line: “This implies, as a matter of practicality, that one ought to do 
as much as possible in the first year of a monitoring effort to minimize the chance of this 
occurring”  

Other internet sample size/power calculators also cover unequal variances, 
including a University of Iowa calculator. 

Again, it is important to consult a professional statistician before finalizing 
sampling designs. Although the calculators listed above would often be fine as a first cut 
(illustrating which variables or strata that are just way too variable to allow networks to 
detect a difference of concern), all such simplified calculators should be a used mostly as 
a first step. As more data is collected and monitoring plans began to be refined, networks 
should consult with a professional APPLIED statistician for more advanced fine tuning of 
samples size and power estimations. Those with more advanced expertise may choose to 
use more advanced methods (such as the Gerow calculator or simulation approaches). 

To Detect a Stated Difference between a Mean and a Standard  
 

This section describes relatively simple methods to compute a minimum sample 
size needed to enable one to be able to detect a pre-determined magnitude of difference 
(think of it as a minimum detectable difference = MDD) between a mean and a single 
value, such as a water quality standard or other benchmark. Parks and monitoring 
networks should check with States first, as sometimes the state specifies how many 
samples need to be averaged. A geometric mean is specified in some cases for bacteria. If 
the State has defined requirements (minimum number of samples, timing of samples, type 
of calculation, etc.) then that should be used and any calculations covered in this section 
would be considered optional. 

To be precautionary in ensuring resource protection (in addition to performing 
any State-required estimates), Parks may also wish to know if an average statistically 
exceeds a standard or criterion. In that scenario, one would want to make sure the 
samples were representative of either typical cases (for comparisons with chronic 
standards), or worst-case times of day and/or times of year (for comparison with acute 
standards at the diel or seasonal change time periods most apt to exceed standards). Once 
one has determined how to get representative samples for the question of concern, one 
can use the following to initially estimate the number of samples needed to determine if 
an average value exceeds a water quality standard, criterion, or other benchmark of 
concern. 

Although there has been some controversy in using one-sided test in medical trials 
(where one might want to know about both positive and negative effects), such tests are 
less controversial in helping to answer inherently one-sided questions such as: Does the 
average value exceed a water quality standard? (Using Statistical Methods for Water 
Quality Management: Issues, see discussion on page 80). For those who decide they want 
to use a two-sided test, Zar 1999 has equations and example right answers. For similar 
inputs to those given in the one-sided example below, the required sample sizes may be a 
bit higher for the two-sided test. For example, using Zar equation 7.8 and one-sample, 
normal-distribution, two-sided, sample size calculators, Zar gives a sample size of 19 for 
his example 7.7 (page 107) an example which uses many of the same input variables used 

http://www.stat.uiowa.edu/%7Erlenth/Power/index.html
http://www.statsalive.com/resources.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471470163.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471470163.html
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just below for the one-sided but otherwise analogous case to get a required sample size 
of 15. 

However, many only want to know the answer to the one-sided question (does the 
value exceed a standard?) and EPA has a freeware beta test sample size and sample 
frequency estimator that can be used to estimate the sample size needed to test the 
difference between a single mean and a specified value (such as a water quality standard). 
The equation used is sample size = variance times (ta,v plus tb(1)v)2, all divided by the 
MDD. For explanation see EPA documentation file. In that calculator, if one inputs the 
following, variance 1.568, alpha = 5, beta = 90, and MDD = 1.0, the answer returned is 
“An estimated 15 samples must be collected to yield a 90% chance of detecting a 
difference as small as 1 at a 95% level of confidence. The estimate is based on a variance 
estimate of 1.568, a one-tailed 0.05 level of significance (alpha) and a one-tailed beta of 
0.1. Corresponding t-values used to calculate the estimate are 1.761 (for ta,v, the critical 
one-sided t-value at alpha = 0.05 at sample size 15, DF=14) and 1.345 (for tb(1)v =  critical 
one-sided t-value at beta = 0.10, or 90% probability, at sample size 15, DF=14) 
respectively.” 

One can get the same answer, 15, using the McBride Calculator with the 
following step by step: 

 
Choose the one-sided, one-group option, and click on n to solve for sample size, 
then: 
 
1) Type in alpha as 5 (corresponds to 5% or a significance level of 0.05), then 
2) Type in detection probability as 90 (corresponds to 90%), then 
3) Type in effect size magnitude as 79.9 (corresponds to 79.9% of one standard 

deviation of the values in single sample = effect size expressed as a % of the 
true Standard Deviation), the 

4) Click on calculate, view answer as 15 (choose 15 rather than 14 since we 
seldom know exact variance but instead usually have rough estimates). 

 
In the McBride Calculator, the part that is not quite as straight-forward is how to 
get the effect size magnitude as a percent (79.9). Here is the step-by-step: Since 
effect sizes in the McBride calculator are expressed as percentages of the 
magnitude of the standard deviation (SD), to get from the effect size in original 
units (1.0) to effect size to effect size a % of the standard deviation, we first 
convert the effect size from 1.0 (original units) in the example to a SD percentage 
with the equation effect size = 100*(1.0/standard deviation). In the calculator, the 
*(1.0/standard deviation) part is expressed as delta = Ä = effect size = [(µ-
µ0)/SD] = [(ì-ì0)/ó] for the one-group case. Since Variance is 1.5682, SD = sqrt 
(1.5682) = 1.252278. MDD/SD = 1/1.252 = 0.7985 = ES as a fraction of the SD. 
Round that value to 3 significant figures and express it as a % (79.9), the input 
value needed for the McBride calculator as an effect size. 

 
A key point is that this type of “effect size” is a difference (a MDD in the 
discussions above) between a mean and a standard MDD value (in original units 

http://www.epa.gov/earth1r6/6wq/ecopro/watershd/monitrng/qappsprt/sampling.htm
http://www.epa.gov/earth1r6/6wq/ecopro/watershd/monitrng/qappsprt/sampling.htm
http://www.epa.gov/earth1r6/6wq/ecopro/watershd/monitrng/sampling/index.htm
http://www.niwascience.co.nz/services/free/statistical/detection_
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of measure) divided by the true SD (in original units of measure). In the McBride 
calculator, the value 79.9 is typed into the calculator without the % symbol.  

 
Those who are planning to use Upper Confidence Intervals (UCLs) can use the 

sample size estimators given just above as a first estimate of needed sample sizes. 
However, in deciding what standard deviations to use in the calculations, keep in mind 
the following: Among the recommendations in EPA’s guidance for assessing 
contaminated soil at Superfund site (EPA 2002, Guidance for Comparing Background 
and Chemical Concentrations in Soil for CERCLA Sites, EPA Publication EPA 540-R-
01-003): 

 
To be precautionary when sample sizes of past or pilot data is small or 
questionable, before estimating needed sample sizes, “it is advisable to use an 80 
or 90 percent upper confidence limit for the estimate of the standard deviation 
rather than an unbiased estimate to avoid underestimating the true variability.” 

Solving for Minimum Detectable Difference Rather than Sample Size: 
 

If one already has a proposed sample size, one can also use’s Zar’s (rearranged) 
equation to solve for MDDs: Zar’s minimum detectable difference (equation 7.9, Zar op. 
cit.) for one sample vs. a water quality standard as follows: MDD = square root of 
[sample variance/n] * (two-tailed critical t-value for 1-alpha given-1 degrees of freedom 
and probability chosen  +  upper, one-tailed t-value for 1-beta given n-1 degrees of 
freedom and probability chosen)2. Again, when using Internet calculators, be careful how 
the inputs are made as different Internet calculators have different input formats (for 
example does one input 90% power as 0.9 or as 0.1).  

 
Note: t-value terminology varies in different statistical text books and can be 
confusing. Herein, the phrase two-tailed critical t-value is synonymous with two-
sided critical t-value. Some authors leave the word critical out of the terminology. 
Still others use subscripts. One of the more clear explanations of these terms and 
subscripts is found, as well as a table for both two and one-tailed cases is in Zar 
(1999). 

Inequivalence (Bio-inequivalence) Sample Size Calculations 
 
In an inequivalence hypothesis test, the hypothesis to be tested is that a difference 

between population means lies beyond a stated interval.  
One can use the McBride detection probability calculator not only to reproduce 

some of the same Zar-example values for the null hypothesis test obtained with the 
Gerow calculator, but also to compare probability of detection (or required sample sizes) 
for inequivalence tests (always precautionary), equivalence test (for the most part never 
precautionary enough for common NPS purposes), or a standard null hypothesis t-test 
(often very precautionary at high sample sizes but decidedly not precautionary at low 
sample sizes). 

http://www.epa.gov/oswer/riskassessment/pdf/background.pdf
http://www.epa.gov/oswer/riskassessment/pdf/background.pdf
http://niwascience.co.nz/__data/assets/pdf_file/0018/40509/equivalence.pdf
http://niwascience.co.nz/__data/assets/pdf_file/0018/40509/equivalence.pdf
http://www.statsalive.com/resources.html
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It is hard to determine if null hypothesis tests (NHST) are precautionary or not if 
power is not controlled and specified, but usually NHSTs are not as precautionary as 
inequivalence testing at low (especially at less than 30) sample sizes.  

Be aware that using alpha of 0.05, the use of inequivalence tests typically requires 
much larger sample sizes than the use of equivalence tests, and also larger sample sizes 
than standard null-hypothesis tests. These factors can be especially important when one is 
otherwise initially tempted to consider very low sample sizes as a starting point.  

For smaller sample sizes, we would ordinarily favor inequivalence testing to 
equivalence testing (or to null hypothesis significance testing) in the NPS, to take a more 
precautionary stance in limiting conservationist (type II) risk. After all, the NPS is 
charged with protecting rare and valued resources for future generations. Therefore, 
whether journal editors understand the concept or not, it is illogical to limit the polluter’s 
risk (alpha) to lower levels than the conservationist’s risk (beta).  

When considering these issues, it is helpful to reconsider the questions to be 
answered, the objective of the testing. The key point is that in a precautionary approach—
testing the inequivalence hypothesis—large sample sizes may be needed in order to 
conclude that some effect actually is not environmentally important. With small sample 
sizes, it will be hard to prove that 

Although standard null hypothesis tests have come under fire in recent years, they 
can be used as one line of evidence. This is not a bad idea when sample sizes are large, 
say over 30-50, depending on variability magnitudes, as long as one also states the effect 
size or minimum magnitude of the difference to be detected AND as long as beta is 
controlled to small levels (0.01 or 0.05). The past too common practice of just specifying 
significance level (alpha) alone and leaving beta unknown and uncontrolled is not 
recommended for standard null hypothesis significance testing relating to valued NPS 
resources. 

In general, proof of safety (as in an inequivalence test) is harder to establish than 
proof of hazard. Figure 5.11 in the McBride statistics book shows that the point-null test 
can behave very differently from an inequivalence (or equivalence) test. In inequivalence 
tests, to reject the hypothesis is to infer that the variables being sampled are very unlikely 
to differ by more than a specified amount (the prescribed interval width) and so may be 
considered as equivalent. That is, differences are expected, but if they are small enough 
the variables can be considered as bioequivalent. 

One can sample size what-if games with the precautionary inequivalence option 
vs. other options given various effect sizes and sample sizes (and various alpha and beta 
inputs) using the McBride Detection Calculator to see how detection probabilities change 
under different scenarios.  

The McBride calculator is in units expressed as a % of the standard deviation, but 
for comparison, one can do paired sampled calculations in original units of measure for 
a standard hypothesis test using the Gerow Calculator. Using the McBride calculator, be 
aware that in a perfectly normal population a standard deviation might be as much as 
three times smaller than either of the means being compared, so an effect size as a 
difference between means of 50% of the standard deviation (considered a moderate effect 
size in high sample size psychological studies), might be considered small when 
compared to the mean in smaller (and often very skewed) data sets more typical of water 
quality or aquatic ecology. Unless one was very close to a resource collapse threshold 

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471470163.html
http://www.niwascience.co.nz/services/free/statistical/detection
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and/or sample size was large and variance was small, most of those monitoring outdoor 
environmental variables would not even try to detect such a small difference as the 
magnitude of 50% of the standard deviation over relatively short periods of time, say a 
year or two. 

In typical (skewed) field environmental data sets, a standard deviation can be half 
or even equal (or greater) than the magnitude of the mean, so after using the McBride 
calculator, translate the values back to percentages of the mean or median to get a reality-
check look at the effect size from a different angle. The equation used to translate back to 
original measurement units is effect size = the difference in means or the difference 
between a mean and a comparison water quality standard in original units of measure = 
the effect size (as a percent of the standard deviation) times the standard deviation, all 
divided by 100. 

The factors that have retarded the use of inequivalence testing have included: 
 

1. Many are not yet familiar with it. 
2. Sample size requirements for inequivalence testing can seem high. 

However, low sample sizes are potential factors in a plethora of statistical 
pitfalls, so assuring reasonable sample sizes is not a bad idea. In fact, one 
advantage of considering inequivalence testing is that when one 
determines detection probabilities, it will steer one way from the very low 
sample sizes (often less than 25-50) that can be so problematic in standard 
null hypothesis significance testing. 

3. There are not as many statistical packages include options for it.  
4. There are few if any user-friendly sample size calculators available based 

on original units of measure. But one can always use the McBride 
calculator (op. cit.) to estimate needed sample sizes after converting 
minimum detectable differences in original units to percentages of the 
standard deviation. 

Comparing Inequivalence, Equivalence, and NHST Options: 
 

The following can be used as a step-by-step procedure for comparing the sample 
sizes needed for the three different options: 

Equivalence Testing Versus Inequivalence Testing 
 

For consistency with an example already given in the discussions above (in the 
step-by-step sections above for both Gerow and McBride Calculators for a Difference 
between two means), let’s use the same Zar example input variables for equation Zar 
equation 8.22 (Zar, 1999; significance level = 0.05, ES = 69, and sample size for each 
sample 45). At the McBride detection probability home page: 

 
• Choose equivalence hypothesis and two groups, the click on “D” for detection 

probability. This is the only choice, but be aware you have to choose it even 
though you are going for inequivalence testing rather than equivalence testing. 

http://www.niwascience.co.nz/services/free/statistical/detection
http://www.niwascience.co.nz/services/free/statistical/detection
http://www.niwascience.co.nz/services/free/statistical/detection
http://www.niwascience.co.nz/services/free/statistical/detection
http://www.niwascience.co.nz/services/free/statistical/detection
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• Type in 5 (for the 0.05 significance level), then choose no for paired data and 
choose next. 

• Choose parallel (the common choice), then choose next. 
• Choose ES, then choose next. 
• Type in 69 (the ES to the nearest integer) for DeltaU, then type in 100 for 

Delta Max, then type in 45 for the sample size of each group. 
 
Next, read the probability of detection on the first line opposite the -100 figure. 

For the (default-choice) TOST inequivalence test option, the detection probability is 
99.9%. For the (default-choice) McBride equivalence test option, the detection 
probability is 46.2%. In other words, using inequivalence testing, there is a 99.9% 
probability that that the tested hypothesis (inequivalence) will not be rejected. For the 
equivalence testing option, the conclusion is that there is only a 46.2% probability that 
that the tested hypothesis (equivalence) will be rejected. Obviously the inequivalence test 
is the more precautionary choice and more appropriate choice for are resource 
protection/stewardship agency than an equivalence test. The fact that it is more 
precautionary is the very reason that inequivalence testing is used in drug testing, one 
cannot afford to make a mistake that would harm humans. Since the NPS tends to be 
precautionary about protecting endangered species and other rare trust resources, the NPS 
would ordinarily use the more precautionary inequivalence testing rather than 
equivalence testing. 

Inequivalence Testing Versus NHST Testing 
 

Choosing between inequivalence testing and the more familiar null 
hypothesis significance testing option (NHST), using the same input variables used 
just above: We already know (and could independently confirm using the McBride 
calculator null hypothesis, two sample option), that the detection probability for the 
NHST option for the example input variables used just above would be 90%. So in this 
particular example (sample size 45), the NHST option would be fine to assure 90% 
power in detecting the stated magnitude of difference (1.5 in original units in Zar’s 
example 8.4, page 134, Zar 1999), as would the inequivalence test option. To assure 99.9 
% detection probability (analogous to power) would take a higher sample size for the 
NHST option, giving an advantage to the inequivalence testing option. However, the 
comparison above clearly shows that the equivalence testing option at sample size 45 is 
clearly not precautionary enough for NPS purposes, with a detection probability of only 
46.2%.  

 
Bottom line: the NHST will often be precautionary “enough” for NPS purposes at 
higher sample sizes (usually above 25-45), but not at lower sample sizes. At lower 
sample sizes, the inequivalence hypothesis test should be used as the first default-
choice rather than the NHST. One advantage of doing this is that the 
inequivalence option will instructively and clearly show the lower detection 
probabilities (and thus the need for higher sample sizes) of the NHST at low 
sample sizes. 

http://www.niwascience.co.nz/services/free/statistical/detection
http://www.niwascience.co.nz/services/free/statistical/detection
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Sample Size Needed to Estimate a Single Proportion 
 
Ratios, proportions, and percentages are intuitively appealing and understandable 

ways to express relationships between two variables. Many (such as ratios between 
medians) are appealing for biological relationships.  

However, calculating single proportions well (with a reasonably small confidence 
interval about the proportion) is notoriously difficult and usually should not be attempted 
with a sample size less than 25-50. If one has fewer samples than that, and there is no 
way to remedy the small sample size, one should probably be transparent that the 
proportion estimate is probably not very accurate (the confidence interval about the 
proportion is too wide to claim reasonable accuracy). 

Calculating the exact needed sample sizes for the estimation of a proportion is 
typically done in EMAP style surveys. The proportion of stream length or miles impaired 
is an objective of interest to some parks and monitoring networks. Part of the appeal is 
that it can relate to GPRA and other more general goals (desired conditions, condition 
assessment percentiles, ecological thresholds, etc.). One typically should use probabilistic 
monitoring designs for questions such as: “What percent of stream miles are impaired?”  

One can make initial estimates of needed sample sizes with table 1 and the 
equation in EPA’s discussion of “How many sample sites to use?” In this case, sample 
size calculations depend only on the proportion and desired % confidence (a z-
distribution confidence interval on the proportion) required. Note that EMAP is using the 
word “precision” in a nonstandard (compared to the more normal QA/QC or NIST/ISO 
terminology for precision) way here. What EMAP (and many statisticians, for that 
matter) means by precision is a z-distribution confidence interval surrounding a summary 
statistic (a proportion in this case), rather than measurement precision. The t-distribution 
that is used for smaller sample sizes for means can’t be used for proportions because it is 
not applicable to sampling from a binomial distribution (the same is not true for the z-
distribution at larger sample sizes). The confidence interval equation should only be 
used at sample size 25 or above (n = 50 is the recommended default) but does not depend 
on a normal distribution.  

For more details, including a step-by-step example for using the equation, see Part 
B. A minimum sample size of 25 relates to different sites rather than to replicate times of 
day at the same site. However, same-site temporal variability will have considered when 
making data analysis decisions, to help make sense of the data related to standards 
exceedances. A key common sense question is how much change in time or conditions 
can occur before the sample is no longer one sample (and maybe sample size is no longer 
big enough to estimate a proportion reasonably well). 

EPA has a freeware beta test sample size calculator for estimating a single 
proportion with various degrees of confidence (size of confidence interval). The equation 
used is sample size = Z value [the a(2) version, which would be 1.96 if significance is 
0.05] squared times the initial estimate of the proportion (for example use 0.5 for 50%) 
all times q (where q = 1 - p, where p is an initial estimate of the proportion), then all 
divided by the length of the confidence interval expressed as a % of the proportion (use 
0.2 for 20%). 

If one does not know what a single proportion will be before sampling, use 50% 
as a starting point in the calculator to be precautionary (to make sure sample size is large 

http://www.epa.gov/nheerl/arm/surdesignfaqs.htm#manysamples
http://physics.nist.gov/
http://www.iso.org/iso/home.htm
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://www.epa.gov/earth1r6/6wq/ecopro/watershd/monitrng/qappsprt/sampling.htm
http://www.epa.gov/earth1r6/6wq/ecopro/watershd/monitrng/qappsprt/sampling.htm
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enough). A trial illustrated that the EPA guidance for starting with a sample size of 25-50 
for a proportion is in the right ball park, as with a proportion of 1/2 (50%) the EPA Z 
calculator returns the following answer: “Based on an initial guestimate of the proportion 
as 50% (worst case, since 50% requires the largest sample size), an estimated 24 samples 
must be collected to estimate the proportion within plus or minus 20%, at a 95% level of 
confidence.” If a confidence of a plus or minus 10% is needed, a larger sample size (96) 
is needed than for 20%. The beginning estimate of the proportion must be between 0.1 
and 0.9, and changes in the magnitude of the beginning estimate of the proportion will 
impact the result in sample size. For additional discussions and examples for various 
assumed proportions see EPA discussion of “Why a sample size of 50?” 

Using simplistic human-population-based calculators (such as the University of 
Connecticut confidence interval sample size calculators) designed for normal populations 
and large sample sizes to estimate confidence intervals about a proportion would seldom 
be optimal in outdoor environment monitoring and using them could result in misleading 
conclusions. For one thing, the sample size of the Target Population of real interest is 
typically hard to quantify but is usually very large. Often the true Target Population 
might relate more to all the samples that could be obtained if one were sampling much 
more frequently (every 5 minutes over a one year period, 24-hours a day, for example). 
Assume the target population had to do with four rivers. Would the size of the target 
population of interest (to plug into the U. of Connecticut calculator, just above), then ever 
simply be 4? No, that is not really the target population of interest. What is more relevant 
to biota trying to survive in the rivers is the changing magnitudes of things like nitrogen 
concentrations, temperature, and pH, all of which can change drastically in one 24 hour 
period, even more seasonally (often a big difference from January to August), and year to 
year (sometimes a big difference from one year to the next). So the target population of 
interest is hardly ever 4 rivers, say sampled twice in 5 years, and the sample size of the 
target population of interest to resource managers would basically never be 4 in that case 

A more common use of calculators relevant to proportions would be to say there 
are 4 rivers in the park, which we are going to sample randomly each year. How many 
samples do we need to estimate the proportions of total riverine sites in the park 
considered impaired each year? Assuming the true proportion is close to 50%, looking at 
Table 1 at the EMAP discussion, one can see that one can estimate the proportion with a 
confidence interval of a plus or minus 20% about the estimated proportion with 95% 
confidence with 25 samples, or one can estimate the proportion with a confidence interval 
length of plus or minus 10% about the estimated proportion with 95% confidence with 
100 samples. 

Although trying to get 30-50 samples is a good rule of thumb to help prevent 
collecting far too few samples when estimating accurate proportions, if an event is rare 
enough (which might be true in pristine areas of National Parks), even 50 or more 
samples may not be large enough to have a very accurate (very small confidence interval 
about the proportion) estimate of a proportion. For proportions, larger sample sizes lead 
to smaller standard errors (smaller confidence intervals about the proportion), and the 
relationship is not dependent on standard deviations.  

Perhaps unwittingly further supporting the “dangerous equation” notion in the 
title, a recent paper that seems to use terminology a bit too loosely and move from one 

http://www.epa.gov/nheerl/arm/surdesignfaqs.htm#manysamples
http://www.gifted.uconn.edu/siegle/research/Samples/samplecalculator.htm
http://www.epa.gov/nheerl/arm/surdesignfaqs.htm#samplesize50
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topic to another without good transitions, and thus tends to confuse or not optimally 
discuss the differences between: 

 
Means and Proportions and SEs about means vs. SEs about proportions,  

 
Sample SDs with SEs about means (the latter is a type of SD but not a sample SD, 
so one needs to be careful with terminology) 
 
Simple variation (as say a sample SD) and variances (squared SDs),  
 

A good example of the hazards on estimating proportions when sample sizes were 
relatively small versus very rare events. 
 

When looking at national health statistics, at first glance it may appear to the 
reader that very rural counties with very small populations have lower proportions 
of the citizens with a rare kidney cancer than more populous counties. However, 
the standard error of the distribution of proportions is fully dependent on the 
sample size, so small counties have less accurate (larger sample size) estimates of 
the true proportion than large counties. A county with 100 inhabitants that has no 
cancer deaths would be in the lowest category of proportions of citizens with the 
affliction (0/100). But if that same county just so happened to have had one 
cancer death instead of zero, it would then have a reported proportion of 1/100 
and would then have been lumped among the counties with the highest rates of 
the disease. Counties like Los Angeles, Cook or Miami-Dade with millions of 
inhabitants do not bounce around like that (Wainer, H.  2007. The Most 
Dangerous Equation. American Scientist 95:249-256). 

Sample Sizes to Estimate a DIFFERENCE between Two Proportions 
 
 The EPA beta test sample size calculator has Z distribution options for calculating 
sample sizes needed for (see EPA beta test sample size estimator Version 0.7.2.2: 
 

1. A test for a difference between proportions and 
2. A test for a difference between a proportions and a value. 

 
If the unzip and install of the beta test is not compatible with your version of 
windows, contact the author for alternative ways to install the beta version. 

Cases Where Variances Are Not Calculated in the Usual Way 
 
Remember that for status assessments sometimes one doesn’t need a sample 

variance: If sites are chosen probabilistically rather than judgmentally, and the questions 
are more along the lines of “what % of park river miles are impaired,” then paired 
designs or estimations of sample sizes based on paired comparisons are not relevant, nor 
is variability a big player in the estimations of needed sample size. For most questions to 
answered in terms of proportions or percentages (% impaired, for example), networks can 

http://stat.wharton.upenn.edu/%7Ehwainer/2007-05Wainer_rev.pdf
http://stat.wharton.upenn.edu/%7Ehwainer/2007-05Wainer_rev.pdf
http://www.epa.gov/arkansas/6wq/ecopro/watershd/monitrng/tools/sampling.htm
http://www.epa.gov/earth1r6/6wq/ecopro/watershd/monitrng/qappsprt/sampling.htm
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usually just plan on the need to obtain at least 25-50 samples in the sampling period of 
interest (see EPA discussion of minimum detectable differences in proportions and “why 
a sample size of 50”, and EPA general sample size discussions). When the need is to find 
sample sizes, the sample variance does not play into the equations.  

However, there are other cases where one needs a variance, and the best way to 
calculate the variance is not always readily apparent. This is especially true for complex 
(unequal probability of selection) monitoring designs. Regardless of the design chosen, 
good estimates of variance or standard deviations are needed for all of the more rigorous 
sample size calculations. Again, beware of cases where the full range of conditions is not 
covered, or the sample size is very small. 

 
Complex Variance Methods for Status Assessments 
 
The goal is to get an accurate one-time (status) estimate of the variance based on 

unequal probability of selection designs (such as GRTS). One “different way than 
normal” method to estimate variance for GRTS status assessments is the “local variance 
estimator” (sometimes also called the “local neighborhood variance estimate”). 
Calculating this requires complex equations. Part of the goal of GRTS users in separating 
“local variance” from other contributors to total variance, seems to be to get the variance 
down, but one cannot thus get rid of some contributors (such as lack of perfect 
measurement precision of repeat measures of a single homogeneous sample). 

If networks decide to pursue the local variance estimator approach, they should 
keep in mind that these approaches are complex enough to often require the help of 
knowledgeable statisticians. 

Complex methods to estimate variances for trends are discussed separately below. 
For examples of calculating variance for status estimates in complex ways and 

related discussions, see: 
 

Stevens Jr., D. L., and A. R. Olsen. 2003. Variance estimation for spatially 
balanced samples of environmental resources. Environmetrics 14:593-610. 

 
Stevens, D. L., Jr. and A. R. Olsen 2004. Spatially-balanced sampling of natural 
resources. Journal of American Statistical Association 99(465): 262-278  
 
However, keep in mind that the very complex ways to estimate variance may not 

always be needed. For example, in conclusions of one recent paper, simulations 
suggested that the "naive" (standard way to estimate) sample variance should work well 
despite being design biased, except when there was a high correlation between the 
response and the auxiliary variable. However, in multipurpose environmental surveys, 
this type of high correlation is unlikely to occur [J. Courbois and N. Urquhart, 2004. 
Comparison of Survey Estimates of the Finite Population Variance. Journal of 
Agricultural, Biological, and Environmental Statistics 9 (2): web-accessible Abstract]. 

An alternative to the local variance estimator is variance based on Horvitz-
Thompson variance formulas (requires approximation to joint inclusion probabilities).  
Both of the Horvitz-Thompson Variance Option and the Local Variance Estimator option 
are included as options in the EPA “spsurvey” downloads. 

http://www.epa.gov/nheerl/arm/surdesignfaqs.htm#samplesize50
http://www.epa.gov/nheerl/arm/surdesignfaqs.htm#samplesize50
http://www.epa.gov/nheerl/arm/designpages/monitdesign/sample_size.htm
http://titania.asa.catchword.org/vl=10497310/cl=21/nw=1/rpsv/cw/asa/10857117/v9n2/s7/p236
http://www.epa.gov/nheerl/arm/analysispages/software.htm
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However one makes the calculation, once an optimal variance estimate is decided, 
then networks can take the square root of the pooled sample variance to get a (type of 
pooled) sample standard deviation to plug into some of the sample size calculators 
discussed elsewhere herein. The simple power and sample size calculation results can 
then be roughly compared to results from more elaborate methods. 

The simple sample size and power calculations can then be compared with more 
exotic varieties. 

The following references are ones that Tony Olsen of EPA EMAP has found to be 
useful in that they incorporate additional information that impacts sample size 
calculations. Cochran is the simple usual approach, Harris incorporates a tolerance 
coverage concept, and Guenther (for means) adds uncertainty in standard deviation used 
in the calculation. The eventual plan is to include sample size calculation script that can 
run in R in our spsurvey (op.cit.) library of functions for survey design and analysis 
(Tony Olsen, EPA EMAP, Personal Communication, 2007):  
 

Cochran, W. G. 1987. Sampling Techniques. 3rd edition. John Wiley & Sons, 
New York. 
 
Greenland, S. 1988. On sample-size and power calculations for studies using 
confidence intervals. American Journal of Epidemiology 128: 231-237. 
 
Guenther, W. C. 1973. Determination of sample size for tests concerning       
means and variances of normal distributions. Statistical Neerlandica 27:103-113. 
 
Harris, M., D. G. Horvitz, and A. M. Mood. 1948. On the determination of sample 
sizes in designing experiments. Journal of the American Statistical Association 
43:391-402. 
 
Kupper, L. L., and K. B. Hafner. 1989. How appropriate are popular sample size 
formulas? The American Statistician 43:101-105. 

Composite Samples, a Special Case 
 

How does one determine statistical power in relationship to sample sizes when 
compositing many individual fish into single composite tissue samples for contaminants 
analyses? In 2000, EPA provided look-up statistical power tables that illustrate that as “a 
factor similar (sic) to a coefficient of variation (CV)…as the ratio of the estimated 
population standard deviation to a screening value (SV) increases (i.e. SD/SV), the 
statistical power decreases” (see EPA 2000. Guidance for Assessing Chemical 
Contaminant Data for Use in Fish Advisories, Volume 1, (section 6.1.2.7.1). Although 
published in 2000, EPA was still recommending this same publication (as well as 
probabilistic sampling of fish tissues) in 2006 (EPA, 2006 Draft Guidance for 
Implementing the January 2001 Methylmercury Water Quality Criterion, EPA-823-B-04-
001). In that same document EPA recommended: “To address spatial variability of 
methyl mercury levels in fish, EPA recommends that states and tribes design a 
probabilistic sampling by randomly selecting sites or sampling locations.” 

http://www.epa.gov/waterscience/fishadvice/volume1/v1ch6.pdf
http://www.epa.gov/waterscience/criteria/methylmercury/guidance-draft-ch4.pdf
http://www.epa.gov/waterscience/criteria/methylmercury/guidance-draft-ch4.pdf
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Don’t put all your eggs in composite samples at first. Although composite 
sampling provides good estimates of mean concentrations within a species at a location, 
the true variability, maximum concentration, and the spatial distribution is lost. In 
composite sampling, it is therefore notably helpful to understand differences in means 
and variances (between compositing and not compositing) on a few pilot-scale (trial) 
samples before finalizing composite sampling schemes for very large and expensive 
monitoring projects. As mentioned in the next section on bacteria, until one is sure about 
the variance estimates to be used in sample size estimators as well as the distribution of 
the parameter of interest in the environment being sampled, one should probably take 
discrete samples for a while at first rather than immediately jumping to composite 
sampling. For more details, see Part B. 

Gilbert has a whole chapter on compositing, providing complex formulas for 
estimating the variance of means and required sample sizes (Gilbert, R.O.  1987. 
Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold Co., 
pages 6 and 72). 

In considering composite samples and sub-samples, making sense involves 
understanding what Cochran calls “relative precision,” the ratio of the variance from the 
combined sample (local small area plus larger area) over the variance from the larger area 
sample (W.G. Cochran. 1977. Sampling Techniques, 3rd edition, John Wiley & Sons, 
New York) 

Bacteria Sampling: Another Special Case 
 
 Like pH, bacteria samples are different partly because they are already on the log 
scale, because of lag times and some other unusual ways in which they are used, and 
because sample size estimations, power, and compositing are all handled a bit 
“differently” than for most other parameters. Guidance on all these topics, including the 
concept that one should not composite at first (until one is sure about the variance 
estimates to be used in sample size estimators as well as the distribution of bacteria on 
beaches) was provided by EPA (EPA, 2005, The Empact Beaches Report, Publication 
EPA 600/R-04/023). 

Transects, Another Special Case: 
 
Transects are often used in long term monitoring and they have appeal for various 

reasons, but power, sample size, and variance estimates can all be more complex than for 
less complex. For an introduction to statistical aspects, variance estimates, comparison of 
variance and covariance values, and how spatial correlation complicates the estimates, 
see Urquhart 2000. Adapting a Physical Habitat. 

.Andrea Atkinson and Colleagues of the South Florida/Caribbean network used 
similar (to those the section above) but different equations derived from Thompson et al. 
1998 (W. L. Thompson, G. C. White, And C. Gowan. 1998. Monitoring Vertebrate 
Populations. Academic Press, 365 pages) to estimate needed sample sizes to find a 25% 
change in mean proportions over 5 years in % cover of living coral, using 20 transects per 
reef (sample size for each transect to estimate the proportion was >250), where variance 

http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://www.epa.gov/nerlcwww/empact.pdf
http://oregonstate.edu/instruct/st571/urquhart/
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estimates were based on an analysis of covariance (Miller et al. Lessons Learned During 
7 Years of Coral Reef Monitoring).  

There can be more information content in proportions based multiple randomly 
selected transects than in randomly selected single data points, and going back to the 
same transects each year increases power (but decreases DF). However, these methods 
are considerably more complex than most of the others discussed herein, and back 
transformation introduces bias and should not be done without a good justification and/or 
bias correction. Therefore, before using similar methods, we recommend that all such 
methods be discussed with a professional, applied statistician to see if they are optimal 
(vs. simulations and other relatively complex options) after considering assumptions, 
local factors, and other specifics. The methods that Atkinson used are starting to get 
beyond the other comparatively simple ones discussed herein that many quantitative 
ecologists should be able to perform and fully understand without some outside help. 

Sample Sizes Needed for Confidence Intervals in General: 
 
Caution: Specify the Kind of Confidence Interval: When using the phrase 

“confidence interval” (CI), be sure to say exactly what kind. Is the confidence interval to 
be calculated one or two-sided, parametric or nonparametric, and what summary statistic 
does it surround? If it is a parametric confidence interval about a single mean, is it t-
distribution confidence interval for small sample sizes or a large sample size z-
distribution confidence interval about the mean. If the confidence interval relates to 
means, is it a confidence interval surrounding a single mean or about a difference 
between two means? Make it clear how the interval will be calculated in the data analysis 
SOP. If the confidence is one sided, is it the upper or lower confidence interval? If the 
confidence interval to be calculated will be two-sided what magnitude will be expressed, 
the whole interval on each side or the (more commonly reported) half-width about each 
side of the summary statistic? Making this clear becomes even more important in cases 
where the magnitude of the confidence interval triggers another decision, such as whether 
or not the sample size is large enough (see Include a Cumulative Bias SOP section 
below). 

For sample size estimation, it may be tempting to simply say that “Our sample 
sizes are driven by budgets only and we are not going to do hypothesis testing, we are 
just going to estimate confidence intervals and the width of the confidence interval 
therefore will be our estimate of uncertainty, so therefore we don’t have to do sample size 
calculations.” There is some truth in this, and the simplicity (and reduced pre-monitoring 
work load) of this approach has initial appeal. However, for various real-world (and 
eventual) data interpretation reasons related to long term monitoring, this type of answer 
is almost always less than fully adequate. 

Probably a more common answer for a sample size goal for a confidence interval 
about a mean is: “Our sample size needs to be big enough to get the confidence interval 
down to a reasonable size (or to a size consistent with project needs).” So, just as one 
example, one could do the calculations and then state that a certain sample size is needed 
to estimate a half-width confidence interval about each side of a mean no larger than + 
20% of the mean. 

http://www1.nature.nps.gov/im/units/sfcn/graphics/CoralMonitor.pdf
http://www1.nature.nps.gov/im/units/sfcn/graphics/CoralMonitor.pdf
http://www.gslis.utexas.edu/%7Ewyllys/IRLISMaterials/excelnotes.html
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Although this would be better than simply saying we are not going to estimate 
sample sizes needed at all, typically such answers are not fully sufficient solutions either. 
Monitoring planners need to consider needed sample sizes in the broader context 
discussed below.  

Although it is true that (strictly speaking) one need not calculate power when no 
hypothesis tests are planned, this is not the only consideration relevant to long term 
monitoring. If the long term data are found to be useful, sooner or later someone will 
want to do other statistical tests with it. This might focus on the difference between one 
time period and another (which relates to trend detection) or a difference between one 
sub-region in space or time and another. Even those who plan to do complex time series 
(repetitive measure) analyses including trend tests often do common sense checks 
somewhat similar in theory to a t-test or paired t-test as a part of basic functional data 
analyses, especially as part of the data analyses step following a data summarization step. 

When considering confidence intervals it is also good to keep Abelson’s caution 
that “Under the Law of Diffusion of Idiocy, every foolish application of significance 
testing will beget a corresponding foolish practice for confidence limits” (Abelson 1997). 

Relative to needed sample sizes, consider the following: 
: 

1. Most monitoring networks will eventually want to do tests for trends (such 
as seasonal Kendall tests for trends), and anytime there is a statistical test, 
adequacy of sample sizes and power are fair questions. Indeed, some 
monitoring groups will not “call a trend” unless a trend test indicates and 
trend AND sample size calculations indicate that sample sizes were 
adequate to call a trend based on a change a certain minimum magnitude, 
while assuring a stated degree of statistical power. 

2. Likewise, anytime someone proposes a monitoring plan to detect long 
term trends, one reasonable question a resource manager might have 
would be: “what is the minimum detectable difference that your sampling 
design will be able to detect, and over what time period?”  To answer the 
question, one typically needs to assess the adequacy of sample sizes with 
some attention to statistical power or other relevant detectability issues. 
Too often, not trying to estimate needed sample sizes and power aspects 
before monitoring began has been one reason why much past water quality 
data has been practically unusable for trend analyses. 

3. A frequent goal for Vital Signs monitoring is whether or not a resource 
collapse threshold or other benchmark (water quality standard, etc.) has 
been passed. Deciding how confident one is about this at least indirectly 
requires attention to sample sizes and minimum detectable differences. 
Confidence intervals about differences between a mean and a water 
quality standard, between a mean and a collapse threshold, or between a 
mean and other benchmarks become exactly analogous to performing a 
hypothesis test! (Graham McBride, NIWA, New Zealand, Personal 
Communication to Roy Irwin, 2007). 

4. By simply saying we are not estimating power or minimum detectable 
differences, since we are only calculating confidence intervals, a 
monitoring network might tend to less homework on identifying 

http://www.usq.edu.au/users/patrick/PAPERS/null%20hypothesis.pdf
http://www.usq.edu.au/users/patrick/PAPERS/null%20hypothesis.pdf
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parameters or strata that are so variable that one would be unlikely to find 
even a large trend difference over even a very long period of time. Again, 
the result might be generating data not useful in answering practical 
questions, and missing the need identify and then throw out an impractical 
measure in favor of a indicators that is more useful for trend detection or 
resource management. 

5. A QA/QC basic is data “completeness.” One needs to determine the 
minimum sample size needed before one can work backwards from that 
and state that some % (say 90%) of samples would meet completeness 
goals. 

Sample Sizes for Two-Sided Parametric Confidence Intervals about a 
Single Mean 
 

Even those networks that don’t express any eventual desire to test for trends will 
typically nevertheless eventually want to ensure that their confidence intervals about the 
mean are small enough (say a certain % of the mean) to represent a reasonably adequate 
(i.e. the confidence interval is reasonably small) estimation of the magnitude of the mean. 
Some statisticians refer to this concept as precision, although it is different than typical 
QC or control chart kinds of precision. 

The ubiquitous t-distribution confidence interval about a single mean is dependent 
on a calculated standard deviation (SD). In cases where the sample size is very small 
(and/or the spatial and temporal coverage of the samples are inadequate), the standard 
deviation has little likelihood of reflecting the full range of conditions of the true but-
unknown underlying population SD, and the calculated confidence interval will thus also 
not be representative of the underlying population. In this case, the width of the 
confidence interval will not likely be a full accounting of true uncertainty. Usually it is 
not possible to achieve perfect precision, perfect lack of bias, and perfect 
representativeness. So even though the formulation of the t-distribution corrects for the 
flakey SD estimates to some degree, at small sample sizes the sample standard deviation 
often tends to underestimate the true underlying population standard deviation. Thus, it is 
not correct to say the % confidence of a t-distribution confidence interval about a mean is 
a full accounting of uncertainty, especially when the confidence interval is based on very 
small sample sizes. 

A key factor to consider is that even a very large starting sample size would not 
be adequate to give a good estimate of the true but unknown population SD if the samples 
taken do not cover the full range of conditions and/or if the samples taken happen to be 
not-representative of the target or population and/or do not give one a reasonable idea of 
the shape of the population distribution of the underlying target population.  

However, possibly an even bigger concern is that whether monitoring planners 
agree or not, sooner or later, some data user is going to (wrongly) line up some 
confidence intervals about means to see if they overlap and (sic, therefore are 
“statistically different”) in a pseudo-hypothesis testing manner Many continue to do 
something like this even though it will give the wrong results. Admittedly, the fact that 
doing this is invalid is not an especially clear argument about why one should pay 
attention to sample size when calculating confidence intervals. However, many of the ill-
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informed will probably continue to do this, and the conclusions that that they draw from 
such comparisons will likely be even farther from reality if sample sizes are too small.  

CIs about a single mean are perhaps among the most commonly used and are 
easily calculated. For example, MS Excel easily calculated 95% t-distribution confidence 
intervals about a mean: 
 

More detail: In the MS Excel Descriptive Statistics popup confidence interval 
results are labeled simply as "Confidence", and amount to the half-width of the 
95% confidence interval: viz., the number that is to be subtracted from the sample 
mean to yield the left end of the confidence interval, and is to be added to the 
sample mean to yield the right end of the confidence interval (UT description of 
Excel Confidence Intervals). 
 
Not so widely understood is the fact that it takes more samples to estimate a mean 

adequately (confidence interval small enough for intended purposes) than many seem to 
realize, especially if variability is high and/or distributions are not symmetrical. Ideally 
one would also have normal distribution, but for real world distributions symmetry is 
perhaps more important.  

Properly calculating the sample size necessary for an optimal parametric 
confidence interval (CI, such as a t-distribution confidence interval) on a mean is 
complicated and subject to more pitfalls than many seem to realize, especially when very 
small samples sizes (<10 or 25 depending the data) are involved or when folks are 
(wrongly) trying to stretch the meaning of a CI (for example with the pseudo-hypothesis 
test discussed above). 

 One should probably evaluate normality with probability plots for all data 
between 10<n<25 to judge the advisability of using a normal theory interval. The smaller 
the sample size, the less symmetrical the data, the less confidence one has the data is 
from a normal population (and it is difficult to decide from small data sets). With very 
small datasets, one is usually also less sure that the values sampled represent the full 
range of conditions of the Target Population. The more questionable these factors are, the 
less sure one should be of the validity of calculated parametric confidence intervals. See 
Part B for additional rules of thumb and detailed discussions.  

Again for emphasis, sample size calculators typically need a good estimate of the 
SD, and unless variability in time and space is very low, one does not typically have that 
in very small samples, especially in the skewed data typical of field and lab 
environmental variables (and the frequent lack of coverage of the full range of conditions 
in the sampled population compared to the target population). Again, since many 
(wrongly) use confidence intervals a bit like (pseudo) hypothesis testing, sample size 
calculators that test for “a difference between a mean and a single value” (AND 
require both alpha and beta inputs) are probably safer ways to calculate sample sizes for 
CIs about a mean than the most simplistic of the single-sample size calculators for 
confidence intervals. Better yet, just use confidence intervals the right way.  

Any comparison of 1 or 2 observations to a pre-existing group (a pseudo-
hypothesis test use) by seeing whether the new observations fall outside an interval built 
from that group should be done with a prediction interval rather than a confidence 
interval. A z-interval should never be used in environmental work, as it assumes that 

http://www.gslis.utexas.edu/%7Ewyllys/IRLISMaterials/excelnotes.html
http://www.gslis.utexas.edu/%7Ewyllys/IRLISMaterials/excelnotes.html
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
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sigma (true but unknown population standard deviation) is known. We never know that. 
Regarding t-distribution single sample-size calculators, without accounting for power, the 
t-distribution CI sample-size formula is set at 50% power. So it should be expected that 
the true interval will be wider than the calculated one 50% of the time. Beta needs to be 
considered for real-world problems. A good reference on sample size formulas and a 
sample size estimator for tolerance interval is Kupper and Haffner, 1989. How 
appropriate are popular sample size formulas?  The American Statistician 43, p. 101-105 
(Dennis Helsel, USGS, Personal Communication, 2006). 

Seemingly recognizing that 50% is not good enough, when discussing the 
inadequacy of the relatively simplistic t and z equations to estimate sample sizes for 
confidence intervals, Blackwood stated that the simple t and z statistic formulas that 
specify only alpha and not beta do not give a reasonable degree of confidence that pre-
specified confidence interval lengths will actually be as small as specified [Blackwood, 
L.G. 1991. Assurance levels of standard sample size formulas (ES&T 25(8):1366-1367], 
for more details see Part B. 

Thus, to assure that confidence intervals are based on adequate size to ensure 
applicability for expanded or potentially implied uses, avoid calculating sample sizes 
with relatively simple t-value “single sample” confidence interval sample size calculators 
with no input for beta. An example of such a calculator would be Zar’s equation 7.7 
(page 105, Zar, 1999). The equations is variance * two-tailed critical t-value, all divided 
by the d squared, where d is the half-width of the desired confidence interval. Zar admits 
that accuracy of the equation is not very good at small sample sizes, partly because 
sample variance is not a good estimate of the true but unknown population variance, and 
that the equation must be solved iteratively with smaller and smaller sample sizes. This is 
the same equation used to “estimate a single mean” (in the EPA frequency and sample 
size calculator. Many (including Helsel, D.R. and R.M. Hirsch. 2002. Statistical Methods 
in Water Resources. US Geological Survey Techniques of Water Resources 
Investigations) have explained why these types of simplistic calculators with no input for 
beta should be avoided and why even those that have input for power should be 
considered rough estimates for various reasons. 

Some might object to calculating power with two-sample calculators when a two 
sample hypothesis test is envisioned. However, doing so solves some of the problems 
listed above. 

Looking at power does not imply we have to do a hypothesis test, and looking at 
power is one way to evaluate different monitoring designs including different revisit 
schedules in panel designs (S. Urquhart 2006, Designing Surveys over Time). 

Given the above realities about how long term data is typically used, planners are 
advised to pay attention to sample size issues and power aspects. Simplistic sample size 
calculators for confidence intervals about means that consider only alpha and not beta are 
not sufficient. Many (including Helsel, D.R. and R.M. Hirsch. 2002. Statistical Methods 
in Water Resources. US Geological Survey Techniques of Water Resources 
Investigations) have explained why these types of simplistic calculators with no input for 
beta should be avoided and why even those that have input for power should be 
considered rough estimates for various reasons. 

 When estimating a CI about either side of a mean, be a bit suspect of those based 
on small sample sizes. If sample is under 30 (and especially under 20), talk to your 

http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://www.epa.gov/earth1r6/6wq/ecopro/watershd/monitrng/qappsprt/sampling.htm
http://www.epa.gov/earth1r6/6wq/ecopro/watershd/monitrng/qappsprt/sampling.htm
http://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3.pdf
http://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3.pdf
http://science.nature.nps.gov/im/monitor/meetings/SanDiego_06/SUrquhart_designing_surveys.ppt#307,3,DESIGNING SURVEYS OVER TIME  (PANEL SURVEYS) VARIANCE, POWER and RELATED TOPICS
http://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3.pdf
http://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3.pdf
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statistician, or at least calculate sample sizes multiple ways (with different assumptions, 
as listed above) and then adopt the highest answer from the options. Also be a bit suspect 
of values based on sampling that was not fully representative of the full range of values in 
the Target Population in time and space, even when the t-distribution is used instead of 
the z-distribution.  

Although it is true that null hypothesis tests are used as stand-alones less and less 
in field studies due to well publicized and very real shortcomings (see discussion on 
choosing alpha, above), in this “anti-hypothesis test climate” there is nevertheless a 
tendency to simply calculate a series of confidence intervals about means in original units 
and then (in a pseudo-hypothesis test mode) see if the intervals themselves overlap. 
However, confidence intervals about means may overlap yet there could be a statistically 
significant difference between the means, see discussion paper by Bower on Minitab 
Homepage (Some Misconceptions about Confidence Intervals).  
 There are many ways various types of confidence intervals, error bars, and low p-
values are frequently misinterpreted, see Di Stefano et.al. 2005 [Di Stefano, J. F. Fidler, 
and G. Cumming, 2005 Effect size estimates and confidence intervals: An alternative 
focus for the presentation and interpretation of ecological data, In A. R. Burk (Ed.) 
(2005). New trends in ecology research. Nova Science:71-102]. 

Perhaps even less understood is that even overlapping confidence intervals about 
medians (often expressed as notches in box and whisker plots) are only a crude guide to 
“significant” differences between medians. Proper hypothesis tests do not look at whether 
confidence intervals around medians or means overlap or not (Dennis Helsel, USGS, 
Personal Communication, 2006).   

In summary, too often confidence intervals about means (rather than confidence 
intervals about a difference in means, see next section) are being calculated for implied 
uses (such as the pseudo-hypothesis tests) by those with minimal knowledge, even 
though doing so is often not justified in context and most statisticians would say these 
types of pseudo-hypothesis tests are not a valid replacement for a proper hypothesis test 
where both alpha and beta are controlled at reported magnitudes.  

In this climate, be especially wary of the most simplistic (one) sample size 
calculators (those that don’t take into account beta), especially for our typically skewed 
environmental variables. A key question is: How will data, the summary statistics, and 
confidence intervals, be used, not only now but after long term monitoring has collected 
enough data to be amenable to various types of statistical tests? 

Sample Sizes Needed for Confidence Intervals around DIFFERENCES 
between Means 
 

Most of the discussions just above relates primarily to confidence intervals about 
a summary statistic such as a mean. Again, for emphasis, it is not good to compare these 
types of confidence intervals to see if there is an overlap between the intervals in a 
pseudo-hypothesis test fashion. Although most beginning statistical textbooks cover 
confidence intervals about a single mean, some do not even mention a confidence interval 
about a difference between two means or medians. 

Even if future data users don’t make the mistake of lining up confidence intervals 
about single means to see if they are different, but instead do it “the right way” (by 

http://www.minitab.com/resources/articles/SomeMisconceptionsAboutConfidenceIntervals.pdf
http://www.latrobe.edu.au/psy/cumming/docs/Di%20Stef%20Fidler%20et%20al%20Nova%2005.pdf
http://www.latrobe.edu.au/psy/cumming/docs/Di%20Stef%20Fidler%20et%20al%20Nova%2005.pdf
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making the confidence interval about the difference between two means rather than about 
a single mean), then they are doing a hypothesis test identical to the normal kind, and in 
that scenario one needs to plan for adequate statistical power and all sample size 
calculators therefore need an input for beta. 

To estimate sample sizes needed for confidence intervals between means, simply 
use two-sample hypothesis test (for the difference between two-means) sample size-
calculators that have inputs for both alpha and beta. Do not use the simplistic single-
sample confidence interval sample size calculators that have an input for alpha but not 
beta (for reasoning, see section below entitled “Parametric Confidence Intervals about a 
Single Mean”). 

Using a hypothesis testing method to estimate needed sample sizes with a stated 
degree of power, when what is actually going to do is calculate confidence intervals 
rather than do a hypothesis test, is called the “power approach” by some. For reference 
and more details, the reader is again referred to a helpful internet resource (Di Stefano et 
al, 2005, op. cit.).].   

The power approach is more appropriate for many NPS applications than the so-
called contrasting “precision approach” (sic, what statisticians tend to mean when using 
the word precision is really about how wide a confidence interval is, with wider CIs 
equaling less precise estimates of CIs) that De Stefano discussed.  

NPS managers typically want to be precautionary in managing rare and valued 
resources. To accomplish that, it is safer to estimate needed sample sizes based on 
limiting beta to small levels, even if one is supposedly just calculate confidence intervals 
on means. Again, soon or later, others will begin lining up confidence intervals about 
means and interpreting them in the wrong way. The only correct way to use confidence 
intervals in a context similar to a standard null hypothesis test is to calculate a confidence 
interval around the difference between two means, rather than, (for example) a 
confidence interval about a single mean. 
 

Options for sample size calculators include 1) a two-sample sample-size 
calculators for differences between two means, and 2) a one sample sample-size 
calculator related to the difference between a mean and a single value (like a 
water quality standard). 

Nonparametric Confidence Intervals about a Single Median 
 

Nonparametric confidence interval (CI) estimates for the median are traditionally 
computed using the binomial distribution (Helsel, D.R. and R.M. Hirsch. 2002. Statistical 
Methods in Water Resources. US Geological Survey Techniques of Water Resources 
Investigations). 

Talk to your statistician before calculating a nonparametric (NP) CI using very 
low sample sizes. As in the case for parametric CIs, one issue is whether or not the full 
range of conditions of the Target Population was included in a relatively low number of 
samples. In other words, very low sample sizes often increase the probability that the CI 
will not be especially representative of the target population. 

CIs should usually not be calculated if the sample size is less than 6-8. Also with 
such small sample sizes, the confidence interval is likely to be unacceptably wide for 

http://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3.pdf
http://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3.pdf
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many project goals and/or overlap impossible values (like zero, see further discussion 
below).  

A handy rough first estimate of nonparametric 95 or 99% confidence intervals 
about a median for sample sizes of 6-120 can be approximated with the UNB tables. If 
one has fewer than 6 observations, trying to do advanced inferential statistics (including 
CIs) on those few numbers is often unjustified and akin to “much ado about nothing.” In 
other words, one cannot create substantial new information content where very little 
information content exists. Trying to read too much into a CI from extremely small 
sample size (or pretending that a standard error from sample size of 2 or 3 means 
something), can be a sign that the author either understands little about statistics or is 
trying too hard to stretch the meaning of anecdotal results. 
 Once one has moved into the final stages of planning monitoring, if enough 
representative and credible preliminary data is eventually available, a statistician can help 
better estimate required sample sizes through bootstrapping simulations. The use of 
bootstrapping to estimate variance and “confidence intervals that are free of normal 
distribution assumptions” is discussed on a generic (terrestrial focus) FS document 
reproduced on a NPS VS website (Statistical Techniques for Sampling and Monitoring 
Natural Resources by Schreuder et al. 2004). 
 However, keep in mind that “There is considerable controversy concerning the 
use of bootstrap confidence intervals…Jackknifing and bootstrapping are no remedy for 
an inadequate sample size. For nonparametric resampling methods, the sample 
distribution must be reasonably close in some sense to the population distribution to 
obtain accurate inferences.” (W. Sarles 1995 SAS bootstrap confidence intervals).  

Some say that bootstrapping techniques are not recommended unless sample size 
is over 40 (Elzinga et al. 1998. Measuring and Monitoring Plant Populations).Others 
would say that the caution regarding over 40 is overly cautious and not widely held. The 
key issue is that a bootstrapped CI based on a sample size of 15 is still a result based only 
on a sample size of 15. No matter what method for computing the interval is done, it will 
be worse than one based on n=20. If those 15 don't cover the full range of conditions, the 
CI will be too narrow. However, bootstrapping is generally recognized as a better way to 
compute a CI for small samples than standard parametric formulae. So it’s the best of a 
bad situation, but is not necessarily to be totally avoided (Dennis Helsel, USGS, Personal 
Communication, 2006). 

Sample Sizes and Statistics for Taxonomic Richness 
 
 This is a complicated subject, see your statistician. For a brief introduction, see 
Oregon State University Statistics Urquhart summaries. 

Sample Sizes Needed for Trend Analyses 
 
In long-term monitoring, one is typically not just interested in documenting status, 

but also trends. The first of five generic VS Goals of Vital Signs Monitoring, and one 
embraced by most NPS VS monitoring networks is to: 

Determine the status and trends in selected indicators. 

http://erdos.math.unb.ca/%7Eknight/utility/
http://science.nature.nps.gov/im/monitor/docs/rmrs_gtr126.pdf
http://science.nature.nps.gov/im/monitor/docs/rmrs_gtr126.pdf
http://www.pitt.edu/%7Ewpilib/bootfaq.html
http://www.blm.gov/nstc/library/pdf/MeasAndMon.pdf
http://oregonstate.edu/instruct/st571/urquhart/index.html
http://science.nature.nps.gov/im/monitor/docs/Goals&ObjectivesGuidance.doc
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How both status and trends will be determined should be summarized in the data 
analyses SOP. General discussions of statistical options for trend analyses, and a 
summary of the frequent need to consider diel, seasonal, flow, or phonological co-factors 
are included herein in the section on a Data Analysis SOP. Here, the focus is narrower, 
on sample sizes needed for trend analyses.  

Estimating sample sizes needed for trends can be tricky, and hints of some kind of 
trend can almost always be found in long term monitoring.  

However, this should not prevent one from looking at the data from different 
angles, including relatively simple ones. In other words, even if one is going to look at 
trends using relatively sophisticated analyses, it is often good to first (and/or also) look at 
potential trends in relatively simply ways. For example, one can use sample size 
calculations for paired t-tests between various logical time periods (especially before and 
after some event that might logically cause a step-trend) as a part of basic functional data 
analyses. This would logically be part of an initial exploratory data analyses (EDA) step, 
or simply part of a data summarization step. Thus, one logical first step in looking at 
sample sizes needed to trend analysis would be to calculate sample sizes needed to detect 
a difference between two means using paired sampling. Then keep those values for 
required sample sizes in mind as a common sense check when developing needed sample 
sizes using more sophisticated trends analyses such as those described below. If the result 
of a sophisticated analysis is a much smaller required sample size, double check to see if 
an input variable was formatted wrong or an assumption was broken in the more 
sophisticated analysis. 
 In a paper that clearly demonstrates the importance of long-term monitoring data 
to understand complex ecosystem dynamics and illustrates use of data from a variety of 
sources and makes extensive use of conceptual models to express hypotheses on 
ecosystem processes and dynamics, Sinclair et al. (2007) noted that very slow changes 
are often not apparent to those experiencing the trend. In fact, they sometimes become 
apparent only after several decades. On the other hand, even slow changes can result in 
irreversible changes into a new state in which the system can remain for long periods, 
perhaps until a new disturbance shifts it to yet a different state or back to the original 
state [Sinclair, A.R.E., Mduma, S.A.R., Hopcraft, G.C., Fryxell, J.M., Hilborn, R., Thirgood, S. 
2007. Long-term ecosystem dynamics in the Serengeti: lessons for conservation. Conservation 
Biology 21(3): 580-590]. 

Again, even though statistics used for trends are often nonparametric tests (like 
the seasonal Kendall Test popular in water quality analyses within the USGS and other 
agencies), required sample sizes are often first approximated with parametric calculators. 

Monitoring networks should consider establishing minimum sample sizes and/or 
minimum periods of time monitored before a trend can be called. Such criteria could be 
part of criteria used before the network decides to call a trend. 

 For example, one Australian state will not call a trend unless 1) the sample size 
was adequate (according to the first equation described below, for two-sided trend 
applications, and 2) the result of a Kendall test for trends indicates a trend. These issues 
and others (autocorrelation, etc, are discussed in a plain-language Internet document 
(Western Australia Water and Rivers Commission. 2004. Statewide Assessment of River 
Water Quality Methods). 

Both two-sided (trends either way) and one-sided (trend in one direction only) 
sample size calculators are available from EPA (beta version) Sample Size and Sample 

http://www.europeansocialsurvey.org/index.php?option=com_docman&task=doc_view&gid=197
http://apostle.environment.wa.gov.au/idelve/srwqa/methodology.htm
http://apostle.environment.wa.gov.au/idelve/srwqa/methodology.htm
http://www.epa.gov/earth1r6/6wq/ecopro/watershd/monitrng/qappsprt/sampling.htm
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Frequency Estimator. Parks are typically interested in trends whether the trend is going 
up or down. Both one sided and two-sided approaches are summarized as follows:  

 
Two-Sided Trend Applications: The equation used by EPA and others to 
estimate adequacy of sample sizes for trends is n = 12 * (sample variance of the 
de-trended series) * [ta2(n-2) + tb(n-2)] 2/trend magnitude2, where ta2(n-2)  is the two-
tailed critical value for the t-distribution for sample size n-2 and where tb(n-2)  is 
the one-tailed (upper) critical t-value for sample size n-2 using alpha of 0.05 and 
beta of 0.1. In this equation, ta  refers to the critical t-value corresponding to the 
Type I errors, corresponding with alpha, and tb  refers to the critical t-value 
corresponding to the Type II errors, corresponding with beta.   
 
De-trending techniques in Excel are explained in the discussion of Time Series 
data analysis. 
 
One-Sided Trend Applications: The one-sided equation (input variables bolded) 
is very similar but uses a one-tailed t value: n = 12 * (variance estimate) * [ta,v) + 
tb(1),v)]2, all divided by the trend magnitude squared, where ta,v is the one-tailed 
(upper) critical t-value for sample size n-2 and where tb(1),v is the one-tailed upper 
t critical value for sample size v = n-2. As can be seen in the equations, in the one-
tailed case (t alpha) has a right-tail area of alpha.  In the two-sided test, t alpha has 
a right-tail area of alpha/2. Regardless of whether the one or two sided choice is 
chosen, in the EPA calculator (op.cit.), significance (example alpha = 0.05) and 
power/detection probability (example 0.9) may be changed in the fields just 
below the equation, which automatically changes both the alpha and beta terms 
accordingly. The one-tailed equations are of special interest to EPA for regulatory 
questions, such as “Did best management practice implementation improve 
historically poor water quality in a watershed by some given percentage?” or “Did 
a new industrial discharge result in declining water quality?”).  If a suspicious 
hint of a trend appears to be in one direction only (the trend line is 
consistently going mostly in one direction), for the one-sided trend equation and 
calculator, see EPA beta test (in the EPA Version 0.7.2.2) sample size calculator 
for trends (choose trends and then choose linear trends). 

 
Complex Ways to Estimate Variance for Trends Analyses: 

 
The goal is not to get an accurate one time (status) estimate of the variance based 

on unequal probability of selection designs (such as GRTS). Instead, the entire purpose is 
to get variance component estimates that can be used to evaluate alternative design 
options for surveys over time. In this case, the local neighborhood variance estimate is 
not used as discussed above for status, but instead restricted maximum likelihood 
variance estimates are made. As was the case for the local variance estimate for status, 
maximum likelihood variance estimates are complex enough that an applied statistician 
may be needed to assist the monitoring networks to make sure the calculations are done 
in optimal ways. 

http://www.epa.gov/earth1r6/6wq/ecopro/watershd/monitrng/qappsprt/sampling.htm
http://www.bized.co.uk/timeweb/crunching/crunch_analysis_illus.htm
http://www.bized.co.uk/timeweb/crunching/crunch_analysis_illus.htm
http://www.epa.gov/earth1r6/6wq/ecopro/watershd/monitrng/qappsprt/sampling.htm
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For example, in a study of salmon habitat trends, Larson et al 2004 separated 
individual variance components to see how survey design detail changes (and various 
combinations of revisit schedules vs. sample sizes and other details) would impact power 
to detect trends over time. Variance contributors were divided into 4 categories: 1) 
Residual Variance (Which includes lack of perfect measurement precision, changes 
caused by different observers, and very short term variation such as diel variation), 2) 
variation between sites, 3) variation between years, and 4) and interaction variation. 
Larson et al explained how one can vary survey design details and see how the changes 
impact variance (based on a root sum of squares method that seems to result in a type of 
pooled sample variance). The variance squares to be added included the 4 categories of 
variance listed above, with some details and various weighting schemes depending on 
monitoring design details. So the goal in this case was to define optimal monitoring 
design details. Another conclusion of interest was that “individual variance estimates for 
each survey did not differ in any substantial way from the grand estimation” Habitat 
variables tend to be less variable than water column water quality variables, but Larsen et 
al. 2004 still concluded that 30-50 samples per year would be ideal in detecting long term 
trends of these variables (Larsen, D.P., P.R. Kaufman, T.M. Kincaid, and N.S. Urquhart, 
2004. Detecting Persistent Change in the Habitat of Salmon Bearing Streams in the 
Pacific Northwest. Canadian Journal of Fish and Aquatic Sciences 61:283-291, Abstract). 

A related but older paper is Larsen, D. P., T. K. Kincaid, S. E. Jacobs and N. S. 
Urquhart 2001. Designs for evaluating local and regional scale trends.  Bioscience 
51:1069-1078). The paper by Larsen et al. 2001 considers two components of variation: 
within sample interval (e.g., year) and across years but does not specifically try to 
separate out diel variation (one way to stratify by time of day to get variability down) or 
contributions to total variation from lack of perfect measurement precision. The 
applications of these to local data can be complex.  

Other resources related to varying monitoring and revisit details in ways that 
influences sample size and power calculations) can be found: 1) In additional references 
in Part B, 2) in the presentation by Urquhart (S. Urquhart, 2006, Sampling Design 
Considerations at the San Diego National NPS Vital Signs Meeting in 2006, which 
discussed not only variance aspects but gives examples of statistical power for various 
rotating panel revisit options. Another older but often quoted reference is Larsen, D. P., 
N. S. Urquhart and D. Kugler. 1995. Regional scale trend monitoring of indicators of 
trophic condition of lakes. Water Resources Bulletin 31:117 – 140. 

A systematic sample is a type of cluster sample, because once you pick the first 
point, all the other points are determined. The problem with compact cluster samples is 
that the variance one gets from such samples underestimates the variance of the 
underlying Target Population, often seriously. We do not like to use the systematic 
random sampling variance with systematic samples because it overestimates the variance 
(Paul Geissler, Patuxent USGS BRD, Personal Communication, 2006, see Part B). 

Another way to approach trend analysis is to estimate variance variances when 
testing for change between two time periods, for example a difference in two means. 
Depending on project specifics one could use a simple variance estimate of total variance 
for each of the time periods if inclusion probabilities were equal. However, for the 
unequal probability options (such as GRTS), one would instead tend to use either: 

 

http://pubs.nrc-cnrc.gc.ca/cgi-bin/rp/rp2_abst_e?cjfas_f03-157_61_ns_nf_cjfas
http://www.jstor.org/view/00063568/ap040466/04a00140/0
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://science.nature.nps.gov/im/monitor/meetings/SanDiego_06/SanDiego.cfm
http://science.nature.nps.gov/im/monitor/meetings/SanDiego_06/SanDiego.cfm
http://www.jstor.org/view/00063568/ap040466/04a00140/0
http://www.jstor.org/view/00063568/ap040466/04a00140/0
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
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1. For means only (not CDFs) an alternative variance based on Horvitz-Thompson 
variance formulas (requires approximation to joint inclusion probabilities). 

2. A more standard “local variance estimator” of variance. 
 

Downloadable tools for both of these options are available from the EPA spsurvey 
(op.cit, citation above). 

Rethink Detectable Difference Goals for Trends 
 
Once one has looked at possible trends from some of the angles discussed just 

above, it is often good rethink how big of trend magnitude (as a minimum detectable 
difference the proposed monitoring needs to be able to detect.  

EMAP tries to detect a 20 % minimum detectable difference in means over 10 
years. In other words, they want to be able to detect a 2% a year change over 10 years. In 
another EPA example, one criterion used for picking an indicator was whether or not it 
could detect a 20% change in ecological condition over a 10-year period with 90% 
confidence (Kurtz et al. 2001, op. cit., citation above in objectives section).  

Again for emphasis, run tentative MDD goals by park management to see if they 
are acceptable related to resource management needs. For highly valued or rare species 
not characterized by very high natural variability, superintendents have sometimes been 
reluctant to accept being able to detect changes of 50% in one year. In some cases, they 
have understandably been reluctant to be on record as being willing to accept 50% losses 
without even knowing the loss had happened. 

Keep applying common sense tests to all decisions related to trends. In local or 
regional areas where there are wet years for several years and then several years of dry 
years, baseline monitoring may have to be done a long time to establish what is normal. 
Climate and other changes have a way of redefining normal. This fact should be taken 
into account when one is trying to detect trends; even if one is using complex methods 
such as multivariate control charts (see What are Multivariate Control Charts?). 

How long does the time frame logically need to be to define conditions outside of 
normal conditions at relatively pristine sites?   
 

Cautionary note on control charts in general: In laboratory measurements of 
chemicals, quality “control charts” have commonly been used to warn operators 
that the measurement process has become “out of control” (probably unreliable 
and in need of new calibration). Baseline data to generate such control limits are 
usually based on long term (read high sample size) lab performance for: 1) repeat 
measurements of the same thing (precision) and 2) especially for bias/systematic 
error (% recovery, only truly “accuracy” for longer-term estimates from sample 
sizes exceeding 25). In these QC applications, distributions are sometimes 
(relatively) normal, so empirical rule-based (multiples of the standard deviation) 
control limits have often been used.  Even for these applications, some have 
pointed out that nonparametric alternatives are better, since environmental data is 
almost never normally distributed. In fact, USGS has at times (notably from 1999 
to 2005) used F-pseudosigma instead of a standard deviation to estimate both 
control and detection limits (see USGS discussion of Long Term Detection 
Levels). Using control charts relative to multiple measures of variables in the 

http://www.esajournals.org/perlserv/?request=get-document&issn=1051-0761&volume=014&issue=06&page=1921
http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc34.htm
http://bqs.usgs.gov/ltmdl/
http://bqs.usgs.gov/ltmdl/
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outdoor environment is a whole different scenario and can often be even more 
problematic than typical lab QC uses, especially if non-normal distributions 
and/or or small sample sizes (not long enough to establish a valid baseline) are not 
properly taken into account. The concern is even larger (red flags should go up!) 
if multiples of the standard deviation (rather than proper standard error-based t-
distribution confidence intervals or various nonparametric alternatives) are 
utilized.  
 
Additional discussions of the limitations and common misuse of the empirical-
rule-based intervals (multiples of the standard deviation) and documentation that 
environmental data is seldom normal are in Helsel and Hirsch’s statistical text 
book (Helsel, D.R. and R.M. Hirsch. 2002. Statistical Methods in Water 
Resources. US Geological Survey Techniques of Water Resources 
Investigations). 
 
For many taxa with large fluctuations in pristine environments, a 10% or even a 

20% local change in 10 years would be impossible or costly to detect, and one would not 
usually go to the trouble and expense if the taxa were not endangered or threatened. Local 
changes of 50% or even more in 10 years even in pristine sites are perfectly natural for 
some highly variable species or groups. For extremely variable groups (bacteria, 
zooplankton, etc.) changes much higher than 50% are normal. Other things being equal, 
long term monitoring groups rightly tend to avoid monitoring extremely variable 
parameters. Although the endangered species criteria above apply globally, they may be 
of some interest for rough comparison with goals of how big of a change one would like 
to be able to detect locally, especially when one is dealing with relatively rare or 
threatened resource. 

At the other end of the spectrum, is interesting to compare the kinds of trends that 
need to be detected for vertebrate endangered species. A new tool is available for trends. 
An equivalence test has recently been developed for demonstrating the absence of a 
trend. Sample sizes can sometimes be insufficient relative to the residual variation (and 
perhaps also autocorrelation) to call a trend. Results from equivalence tests depend 
critically on the magnitude of the equivalence interval. In one example, a half-life or 
doubling time of 20 years for population size was discussed for long-lived and relatively 
stable species. In an example discussed as more appropriate for shorter life-spans and 
more variable species, a less conservative equivalence region corresponded to a halving 
or doubling time of 10 years. In an example that used amphibians species on a global (not 
park) scale, simplifying the definitions of The World Conservation Union slightly, a 
decline in numbers of >50% in 10 years was said to define an ‘‘endangered’’ species and 
a decline of 30% in 10 years defined a ‘‘vulnerable’’ species (P. M. Dixon and J.H. K. 
Pechmann. 2005. A statistical test to show negligible trend. Ecology, 86(7), pp. 1751–
1756). However, in the NPS, we would ordinarily not use equivalence testing, but rather 
the more conservative and precautionary inequivalence testing. 

Calculating needed sample sizes for trend detection can be complex and whether 
or not a trend is detected can depend on numerous indirect details. For example, trends 
detected using a low laboratory detection limit (usually a MDL) and the (now-
discredited) practice of censoring nondetect data to one half the MDL; were often not 

http://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3.pdf
http://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3.pdf
http://science.nature.nps.gov/im/monitor/docs/DixonPM_Pechmann_2005_trends.pdf
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detected when a higher MDL limit was adopted. Changing from monthly to quarterly 
sampling frequency resulted in fewer trends being detected. The details of how one 
adjusts data or weights data versus flow can also influence the results (as well as explain 
some patterns) and need to be considered (B. Stansfield, 2001. Effects of sampling 
frequency and laboratory detection limits on the determination of time series water 
quality trends. New Zealand Journal of Marine and Freshwater Research, Vol. 35: 1071-
1075).  

The USGS has published a whole series of documents that drive home the point 
that many water column parameters are driven strongly by flow intensities. Many USGS 
publications therefore utilize flow-weighting. High flow often changes the magnitudes of 
many parameters, and normalizing or weighting data by flow, load, or yield can be 
helpful in comparing sites or explaining variability patterns. 

13) When In Doubt, Throw It Out: 
 

This theme is so important that it is brought up multiple times herein. See 
additional related discussions in Section III (above) on documenting how measures and 
vital signs were picked. On the scale of multiple measurements, retain only measures that 
have acceptable minimum detectable differences over stated periods of time.  

On the scale of each individual measurement, consider using only measures 
having acceptable levels of measurement precision, acceptably low detection limits (or 
good sensitivity as AMS), and acceptably low measurement bias. 

Once calculations have been done on required sample sizes, this topic should be 
revisited. Measures or strata with excess variability will often prevent detecting a trend or 
a difference of even a large magnitude with existing budgets. Upon discovering that 
initial plans for the monitoring design (including what/where/how often to monitor) will 
not result in being able to detect a difference of concern, adjustments usually must be 
made.  

Often monitoring planers throw out measures and strata that are obviously too 
variable to ever detect an effect size of concern with available budgets. If there is a strong 
desire to keep the vital sign or measure, try stratifying to get variability and sample sizes 
down to reasonable levels. If measurement uncertainty is excessive due to poor 
measurement precision or excess measurement bias, adjust the field or lab methods to get 
the uncertainty down to acceptable levels, or choose a surrogate/alternative measure that 
can be quantified with less measurement-level uncertainty. 

When the summary statistics of concern are means, consider throwing out 
analytes or measures where the variability in the sites sampled, is so high even in pristine 
sties (and even using strata or response design details that reduce variability the most) 
that one would never find a trend or difference of biological concern given funding 
limitations.  

For the calculation of proportions or percentages, the thought process is a bit 
different than for means: If one cannot get a sample size of 25-50 in a logically 
defendable single sample (a sample that has a good chance of covering the full range of 
conditions of the named Target Population, defined in detail in time and space), consider 
throwing out the variable or making other changes in approach. For single proportions, 
see EPA discussion of ““Why a sample size of 50.” 

http://www.rsnz.org/publish/nzjmfr/2001/91.pdf
http://www.rsnz.org/publish/nzjmfr/2001/91.pdf
http://www.rsnz.org/publish/nzjmfr/2001/91.pdf
http://www.epa.gov/nheerl/arm/surdesignfaqs.htm#samplesize50
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Don’t Just Report an Unsatisfactory Result, Change Something: 
 
If one finds out there is only an 11% chance in detecting a very large (and 

presumably ecologically devastating) change over 50 years, then “change something!”  
This usually means either throw out the measure or indicator or find some way to 

get variability down.  
If one cannot get variability down (usually by restricting sampling and inference 

to smaller areas in time and space), perhaps just abandon the measure. After all, most 
networks have far more candidate measures than funding to support them all. Don’t just 
continue as planned because some assembled group thought that monitoring variable X 
might be a good idea. Most likely, they were unaware of the problem of detectable 
differences, or they might not have recommended variable X.  

However, a counter argument that can be relevant at times is that there may be 
cases where one considers statistical issues and logically decides to stick with a measure 
rather than throwing it out, simply because other factors are concluded to be more 
important. No amount of statistical sophistication can make up for missing the most 
important variables (or bad data, or a bad monitoring design, or not meeting required 
assumptions, for that matter). 

Thus, statistical considerations should not automatically override all other lines of 
evidence related to drivers impacting biological or ecological factors (think twice before 
throwing out oxygen or pH).  

In one relevant example, the Northern Colorado Plateau Network decided to still 
measure TP even though MDDs were less than ideal, because (Dave Thoma, NPS, 
Personal Communication, 2007): 

 
1)  TP is part of a free nutrient analysis suite done for a cooperative agreement 
with the state. 
2)  At a screening level the Network would be able to see if something drastic was 
occurring in sites where I don't have sufficient historic data to do power analysis. 
3) The Criteria for listing on the 303(d) list are not based on statistics.  Listing is 
based on a fixed number of exceedances in a 12 month period. 
4) The water quality standard of concern and 303 listing is for TP.  
5) Some the variability of TP is due to ambient levels being near MDL detection 
limits (unavoidable, it is what it is). 
6) In spite of MDD issues, TP is probably the best “total phosphorus load” 
parameter. 
 
The above is an example of a good justification of why a measure was chosen in 

spite of being more-than-optimally variable even in pristine environments. In a related 
note, phosphorus parameters tend to be highly dependent on flow, so there might be a 
better chance to detect trends if the P data collected is flow-weighted prior to trend 
analyses. 

14) Optimize Monitoring Plan Details for Affordability and Logic  
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Monitoring design optimization steps not only include throwing out measures 
with excess variability, but also restricting Target Populations in time and space, not 
doing monitoring already done by others, and considering other steps that could be done 
to optimize monitoring. For example, if detection probabilities are still too low after the 
steps above are completed, consider the following: 

Often the choice is between: A). monitoring many sites and measures very 
infrequently and poorly, or B). monitoring fewer sites and measures more rigorously 
and/or more often. Choice A has too often resulted in data that can be used for very little 
(if anything) related to management decisions or regulatory purposes. Choice B is 
sometimes a better option that produces at least some useful information. During plan 
optimization steps, reconsider the overall affordability and logic of sample sizes, sample 
placement, sample replication (how many samples at each site, where to sample, how 
often to sample, when to composite (or not), statistical significance, and statistical power.  

The goal is to come up with a combination that will produce acceptable detection 
probabilities and will produce information (not just data) useful to park managers for 
resource management decisions. The more (and the earlier) the network quantitative 
ecologists and statistical consultants can help with these steps, the better.   

15) Draft Initial Sample Sizes and Optimized Monitoring Design 
 
 Also assemble the best available estimates for input variables (standard 
deviations, alpha, beta, see list above) to take to the applied statistician (next step). 

16) Finalize Sample Sizes and Design with an Applied Environmental Statistician 
 

Once network quantitative ecologists and small groups of specialists that are 
finalizing protocols and SOPs have completed the steps above, they should strongly 
consider consulting with an applied statistician, taking that expert the correct information 
and input variables (above), refined questions (detailed in time and space), and refined 
Target Populations. The generic basic design developed for the earlier Phase II report 
may have been envisioning larger sample sizes and the assumptions may have changed. If 
the sample sizes have been cut and other changes have been made in design optimization 
steps taken when developing QA/QC and data analysis SOPs, the revised plan needs to 
be checked again by a statistician. Typically the first version of chapter 4 (Monitoring 
Design) of the central monitoring plan is drafted a year or more before the SOPs are 
finalized. In the next year there have often been disconnects and assumption changes 
between earlier statistical advice and later changes at the protocol and SOP detail 
development stage.  

Distributions are typically not normal, samples are often not large, and various 
assumptions may not be defendable. Standard power and sample size analyses may get 
one in the ballpark, which will usually be adequate given that preliminary data that one 
bases the calculations on are often not optimal. However, if preliminary data does cover 
the full range of conditions, some analyses are too complicated to rely solely on plug-in 
power calculations. Sometimes, multiple hypotheses need to be considered 
simultaneously. This requires more complex methods, such as Monte Carlo simulation-



 124

based approach to determining sample size and power (see P. Lukacs 2005 Beyond 
Simple Power Analyses from the NPS VS Austin, TX Meeting). 

Remember however, that you need to take meaningful data to the statistician. The 
initial data available before the start of simulations must have sample sizes large enough 
(look at the data closer if the sample size is less than 30-200) to be optimally useful in 
simulations. The initial data must also be relevant and representative of the full range of 
time and space conditions of the Target Population. That last caution also applies not 
only to simulations and other complex calculations but also to simple-algebra Zar sample 
size calculators.  

After completing consultations and final checks with an applied environmental 
statistician, finalize the following in the protocol narrative and SOPs:  1) sample sizes, 2) 
minimum detectable differences (or alternative target effect sizes), and 3) sample 
placement in time and space detail. After monitoring designs are modified and finalized 
in optimization steps Chapter 4 (monitoring design) of the central monitoring plan for 
each Vital Signs Monitoring Network will also need to be modified to reflect the final 
design. 
 The sample size needed to determine a desired minimum detectable difference 
(and how it was determined) relates to many other issues. Therefore, we suggest 
networks not only document how MDDs and target thresholds were determined in the 
data analysis SOP, but also include brief recaps or “point to” links in other related 
sections, such as the discussions of representativeness and completeness in the QA/QC 
SOP, and the sampling design discussions (Chapter 4 in the central monitoring plan). 

17) Estimate the % of Samples That Will Fail 
 

It would be rare for 100% of planned outdoor environmental samples to produce 
useful data. Seldom are all planned samples successfully obtained and also pass all QC 
data acceptance criteria. Samples or samplers may be lost in the field, lab or field 
complications may interfere, and samples can get lost of be spoiled while being shipped 
to the lab. Weather events may interfere with sampling or analyses (when shipping 
samples to coastal areas, hurricanes have delayed analyses), staff or equipment failures 
can be a problem, or delays may cause maximum holding times to be exceeded. A new 
technician might also use the wrong type of container or otherwise contaminate samples. 
Therefore, before required sample sizes are finalized, one first needs an estimate of the % 
of planned samples that may fail. If no other good rationale can be developed, planners 
sometimes pick a number like 10 or 15% to start with and adjust it as experience is 
gained. 

18) Increase the Planned Sample Sizes Accordingly 
 
 Next, adjust required sample sizes upward to correct for the % expected to fail. 
For example, if 15% of the samples are expected to fail, multiply the required sample 
sizes developed in 16 by 115%, and edit the plan, protocols, and SOPs accordingly. 

19) Include Completeness Goals in a Table in the QA/QC SOP 
 

http://science.nature.nps.gov/im/monitor/meetings/Austin_05/PLukacs_SampleSize.doc
http://science.nature.nps.gov/im/monitor/meetings/Austin_05/PLukacs_SampleSize.doc
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 For each parameter to be measured, include a completeness goal in the SOP. If 
15% of the samples are expected to fail, put 85% in the table as a completeness goal. 
 
End of completeness, sample size, and statistics vs. desired conditions outline and 
chapter. 
 
VII. Data Comparability (Internal/NPS and External/Other Regional Data) 
  

We are now moving from QA topics to QC topics. Comparability is usually 
considered a QC basic, albeit one assured qualitatively. More statistical tools are now 
being developed, and in future years the comparability may be assured more 
quantitatively.  

For Internal Data Comparability: What will be done to maximize temporal and 
methodological consistency in NPS data? Control typically involves limiting changes in 
internal NPS methods or timing of sampling to help insure our own newer data is 
comparable to our older data. However, due to advancing technology and other factors, 
changes in both methods and personnel are inevitable. When such changes occur, any 
resultant measurement bias from the change should be documented in the Cumulative 
Measurement Bias SOP. The question then becomes:  Is our internal NPS data from both 
old and newer measuring systems comparable enough that the different sets of data could 
be combined for purposes of determining trends or making management or regulatory 
decisions?  If not comparable enough for that purpose, newer data and older data will 
often need to be normalized to data as of one (baseline, often starting) date. For more 
information, (see Include a Cumulative Bias SOP section below)  

For External Data Comparability: What will be done to achieve comparability 
with other regional data sets such as ECDMS and will labs approved by other federal 
agencies. For example, will FWS approved labs (Analytical Control Facility) be used?  
Will an effort be made to standardize with USGS, State, NOAA, or EPA CERCLA site 
methods and/or labs? Are exactly the same parameters and fractions (total or dissolved, 
for example) being measured in identical media, and are Measurement Quality Objectives 
for precision, bias, and sensitivity (sensitivity is usually expressed as a MDL low-level 
detection limit or as AMS) similar enough to ensure data comparability? What will be 
done to insure our NPS data are comparable enough to the data from other state and 
federal agencies that need to be convinced our data is credible and comparable, given our 
purposes for monitoring? Is our NPS data comparable enough to other important outside 
data sets that the two sets of data could be combined for purposes of determining trends 
or making management or regulatory decisions?  

Has the chemical lab proposed for use 1) passed federal round robin blind sample 
checks (see FWS example at), or 2) performed acceptably in other federal round robin 
blind checks (see USGS example), or 3) been approved to work for the parameter of 
interest and media of interest by the Federal National Environmental Laboratory 
Accreditation Conference (NELAC)?  

For sediment or fish tissue monitoring, a good way to ensure data comparability 
with the large FWS nationwide data base (on metals, pesticides, herbicides, PAHs and 
other oil-related compounds, dioxins, PCBs, and other toxic chemicals in fish, wildlife, 
sediments, and soils) would be to use the same FWS-approved contract labs, or at least 

http://www.fws.gov/chemistry/acf_ecdms.html
http://www.fws.gov/chemistry/acf_labs.html
http://www.fws.gov/chemistry/acf_how_we_select.htm
http://bqs.usgs.gov/srs/
http://www.epa.gov/nelac/
http://www.epa.gov/nelac/
http://www.fws.gov/chemistry/acf_labs.html


 126

ask for the default (or at minimum, at least as stringent) FWS QA/QC measurement 
quality objectives for precision, bias, and sensitivity as detection limits. 

For water column parameters including the nutrients, the QC performance of labs 
that participate in the USGS SRS round-robin comparison can be checked to see if the 
performance meets monitoring network target measurement quality objectives.  

Among labs that have passed federal QA/QC checks, it is often optimal to choose 
labs that have produced a large amount of data for other federal programs to gain 
maximum data comparability. For example, if the network is producing water column 
data, the USGS NWQL lab or USGS round robin test labs might be among the optimal 
choices. If the network is producing data on benthic macroinvertebrates, the USGS labs 
used by NAWQA or the Utah State Bug Lab (especially for western or BLM data) labs 
might be good choices. A key question is: which labs have produced the most data that 
will be compared to new data being generated by the NPS network? 

A final check should be made to make sure both the lab and the field method 
SOPs attached to the protocol are detailed enough to allow for reproducibility of exactly 
the same methods by third parties. Are they also detailed enough to allow judgments 
about the comparability of the data with the data of other agencies? Perfectly comparable 
data can be merged and analyzed together without introducing problems. 
These issues are just as important for biological monitoring as for water chemistry 
monitoring. Interagency efforts are now being made to come up with acceptance criteria 
to determine data comparability.  

A recent document explains many bioassessment data comparability issues for 
large river monitoring but the methods for comparability analyses considering 
Measurement Quality Objectives (MQOs, including sensitivity, precision, bias, and 
precision) seem broadly applicable to smaller (wadeable) rivers as well (Flotemersch, J. 
E., J. B. Stribling, and M. J. Paul. 2006. Concepts and Approaches for the Bioassessment 
of Non-wadeable Streams and Rivers. EPA 600-R-06-127). Therein, accuracy is 
(appropriately) identified as a different concept than bias. Not mentioned, however, is 
that the type of accuracy explained (the proportion of times a scoring system accurately 
classified a site) typically requires a sample size of 25-50 for a good (confidence interval 
reasonably small around the proportion) estimate of the proportion. Another concept 
discussed of interest in the NPS is that “programs needing only to separate extremely 
disturbed from minimally disturbed sites will require less precision than programs 
designed to detect small departures in ecosystem condition.” 

 

Comparability in Agreement or Pass/Fail Scores 
 

In a topic somewhat related to the paragraph just above, as of 2006, there are no 
universally accepted ways to assess “agreement” (a different topic than correlation) in 
ratings or scores for biotic “condition,” some of which have only two possible ratings 
(pass or fail). Highly correlated scores (such as index of biotic integrity scores) indicate 
high “association” but do not guarantee a strong strength of “agreement.” For example, 
results from one state sampling protocol may rate stream condition consistently one level 
higher or lower than that of another state or federal program. In this case, the strength of 
agreement is not strong, although the correlation/ association may be very strong. 

http://www.fws.gov/chemistry/acf_qaqc.html
http://www.fws.gov/chemistry/acf_qaqc.html
http://bqs.usgs.gov/srs/EnrolledLabs.xls
http://bqs.usgs.gov/srs/EnrolledLabs.xls
http://bqs.usgs.gov/srs/EnrolledLabs.xls
http://www1.usu.edu/buglab/
http://www.epa.gov/EERD/rivers/non-wadeable_full_doc.pdf
http://www.epa.gov/EERD/rivers/non-wadeable_full_doc.pdf
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Accordingly there has been much recent interest in various options for measuring 
strength of agreement. 

It is easier to make comparisons with scores or ratings when there are only two 
choices rather than with many different categories. These matters are the subject of much 
current interest. Again, it is much easier to make comparisons with two variables or two 
scores than with many. Networks should probably consider looking at such issues from 
different angles, including some relatively simple and intuitive ones.  

It helps if dichotomous decisions can be made. Even in a relatively complex 
rating system (very poor, poor, fair, and good) the key goal might be maintaining “good” 
condition. Simple calculations could be made relative to the % agreement where both 
methods resulted in “good” scores, the relative percent difference between two scores, or 
the % bias comparing results of one method to another. 

As another example, what % meets quality standards (pass/fail)? With enough 
data, networks can usually quantify the proportion of river miles that either passes or fails 
water quality standards. These values can sometimes be compared with other category 
dividers (say between fair and poor) in more elaborate systems.  

. This approach would be consistent with a reality-check step of looking at the 
issues from different angles, including some relatively simple and intuitive ones. In other 
words, use intuitive and simple lines of evidence in addition to exotic coefficients (such 
as kappa) when possible 

When there are multiple ratings (very poor, poor, fair, and good), things get more 
complex. Some have suggested using kappa or weighted kappa to look at agreement of 
IBI scores or to evaluate agreement in ratings of stream condition. For example, the EPA 
summary of the Mid-Atlantic Integrated Assessment Maryland case study took this 
approach.  

The free McBride Cohen’s kappa calculator can be used as one way to look at 
agreement of dichotomous data.  McBride also has a Lin’s concordance calculator on the 
net to calculate Lin’s "concordance correlation coefficient." This statistic appears “to 
avoid all of the shortcomings” associated with the usual procedures (such as a Pearson 
correlation coefficient) and can be used as one way to look at strength of agreement of 
continuous data. 

However, kappa and similar methods tend to be complex and they have their 
detractors. Detractors say kappa is over-used. They also point out assumption 
complications and that not everyone agrees on how high a kappa score has to be to reflect 
various gradations of agreement. So agreement coefficients are something to have your 
applied statistician approve before finalizing them for particular applications.  
 

VIII. Measurement Sensitivity  
 
 When measuring water quality chemicals at very low levels, a system that can 
accurately measure and detect a very low concentration is more sensitive than one that 
can only detect the presence of the analyte at higher concentrations. The more sensitive 
the measuring system, the lower the low-level detection limits are.  

For chemical lab analyses, low-level data quality indicator (DQI) sensitivity goals 
or requirements for sensitivity are usually expressed in two ways: 1) a semi-qualitative 
method detection limit (MDL, usually expressed in metric units such as mg/L or mg/kg) 

http://www.niwascience.co.nz/services/free/statistical/kappa
http://www.niwascience.co.nz/services/free/statistical/kappa
http://www.epa.gov/emap/maia/html/region.html
http://www.niwascience.co.nz/services/free/statistical/kappa
http://www.niwascience.co.nz/services/free/statistical/concordance
http://www.niwascience.co.nz/services/free/statistical/concordance
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and 2) a quantitative detection limit (ML, usually 3.18 times the MDL). Actual MDL 
levels that can be achieved by any one lab vary a bit over time. One criterion for choosing 
a lab should be whether or not the lab can consistently achieve MDLs below the 
minimum level needed for project objectives. As first mentioned in the section on picking 
methods and SOPs, there should be an emphasis on picking methods and labs that can 
consistently achieve a semi-quantitative MDL detection limit lower than the lowest water 
quality standard (including chronic standards) or other "safe levels" or other threshold 
benchmarks of concern (optimally at least 1.6 to 2 times lower).  

How low the detection limits need to be also depends on the concentration 
typically found in the environment being sampled. For example, down-gradient from 
cities or intense agriculture, concentrations of nutrients like TN, TP, Nitrate, Phosphate, 
TDN, TDP, etc. may be high enough all the time that one need not have the lowest 
possible (and therefore sometimes more expensive) detection limits to get say 5 times 
below the lowest levels commonly found in the environment. In pristine oligotrophic 
lakes in the National Park Service high altitude parks, the levels in the environment, and 
therefore nutrient MDLs, may need to be much lower (see Oregon State example low 
level MDLs for nutrients). 

After monitoring starts, MDLs (lab work) or AMS (field measures) or the other 
relevant forms of sensitivity should be checked every so often to make sure original 
project goals for measurement sensitivity are being met. 

Toxic chemicals can be hazardous at very low levels, and there is typically a 
concern about whether or not they are present in parks, even at very low levels. Likewise, 
some pristine waters in the NPS have very low concentrations of nutrients, and the parks 
want to keep them that way. Both of these scenarios lend themselves to documenting and 
controlling measurement sensitivity with the lowest-practicable detection limits. Low 
level detection limits have been the most common way sensitivity has been handled in the 
past, and for water quality parameters sometimes present in very low amounts, they are 
still critical.    

If we are always measuring in higher measurement ranges (well above the low-
level quantitation detection limits) we still need to control measurement sensitivity, but 
not always low level sensitivity. For some parameters measured in the field (pH, 
temperature, conductivity, biological observations, physical habitat observations, etc.), 
one seldom (if ever) encounters extremely low levels.  

In these mid (or quantitative) measurement ranges, the smaller the (true) change 
that a measuring system can accurately detect, the more sensitive the measuring system 
is. For these types of measurements, low level detection limits are less relevant and/or 
less helpful. In these cases, we recommend alternative measurement sensitivity (AMS or 
AMS+) method to estimate measurement sensitivity can be used, as explained in more 
detail farther below, after the various low level detection limit sections. 

As discussed in more detail below in a section on AMS for biological or physical 
habitat measures, such measures are amenable to controlling sensitivity at the QC level as 
AMS, Sensitivity as MDLs would be less optimal for most biological or physical 
measures, since very-low-signal-strength scenarios would tend to the exception rather 
than the rule 

http://www.ccal.oregonstate.edu/detection.htm
http://www.ccal.oregonstate.edu/detection.htm
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Minimum detectable differences are discussed elsewhere herein. That is because 
MDDs are about sensitivity at a higher level (the survey or overall monitoring design 
level) rather than the QC level being discussed in this section.  

Low Level Detection Limits (MDLs and MLs) 
 
In 2004, EPA clarified that (low-level) “detection” indicates the presence of a 

pollutant in a sample. Quantitation, on the other hand, indicates how much pollutant is in 
the sample (EPA 2007. Procedures for Detection and Quantitation). 

Minimum Requirement: In the QA/QC SOP, list (a table is fine) pre-project 
targets (and how often they will be estimated once monitoring begins) for the following 
low-level detection limits: 

 
1. A semi-quantitative method detection limit (MDL) and 
2. A quantitative (minimum level of quantitation) detection limit (ML).  

 
For NPS standardization, the MDL and ML are the suggested defaults. We 

suggest a minimum frequency for calculation of these values of at least once every six 
months or whenever there is a significant change in the measurement process.  

Using the default suggestions given in many EPA methods would be acceptable. 
For example, many EPA methods suggest that MDLs should be determined every six 
months at a minimum. New MDLs should also be calculated more often than each six 
months when there is a significant change in the measurement process, such as: 1) a 
change in a measurement instrument’s responses to blanks, 2) when precision or bias 
changes, 3) when a new matrix is encountered, or 4) when the lab believes (for whatever 
reason) that there may have been a change of low-level measurement sensitivity..  

For example, when a new operator begins work or when there is a significant 
change in the measurement process (new method or new instrument), one should suspect 
that sensitivity may have changed and therefore recalculate MDLs. Some labs take the 
precaution to calculate MDLs more often than every six months or after significant 
changes, and that fine, a more precautionary approach to make sure the measurement 
process is remaining consistent (producing comparable data) and in control. 

What does one put in the MDL and ML tables in the QC SOP in this situation?  In 
many cases one can use another program’s defaults (for example, a state or EMAP’s 
MDLs). One might also just enter a code in the table that is explained in more detail at 
the end of the table. The code explanation might explain that as long as precision MQOs 
are met above twice the MDL and the field readings settle down to one value, these 
other-agency MDLs and MLs were considered sufficient. MDLs (or other forms of 
measurement sensitivity) need not always be the most stringent ones available, but they 
do need to be listed and meet project goals 

The MDL and ML are to be calculated as follows: 
 

MDL: 
 

http://www.epa.gov/waterscience/methods/det/#proposed
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List the target standard EPA method detection limit (MDL), for each parameter to 
be measured, in a QA/QC SOP. Labs should be instructed to calculate the MDL as 
explained in Appendix B to 40 CFR Part 136—Definition and Procedure for the 
Determination of the Method Detection Limit—Revision 1.11). That same definition was 
reiterated, further explained, and defended by EPA in 2003: "Technical Support 
Document for the Assessment of Detection and Quantitation Concepts" (EPA 821-R-03-
005, February, 2003), a very lengthy (200+ pages) updated recommendations and 
discussions of pros and cons of alternative detection limits past and present. The MDL 
definition has remained the same as the one in past years: 

 
To determine the MDL, at least seven replicate samples with a concentration of 
the pollutant of interest near the estimated detection capabilities of the method are 
analyzed. The standard deviation among the replicate measurements is determined 
and multiplied by the upper (one-sided) critical t-value for n-1 degrees of freedom 
(in the case of 7 replicates, the multiplier is 3.143, which is the value for 6 
degrees of freedom).  
 
Although most labs and even some EPA staff and published EPA methods do not 

always use all the steps suggested by EPA to calculate a MDL, most at least eventually 
use the central equation of Method Detection Limit (MDL) = t times S, where, t = the 
one-sided critical t-value for seven replicate (precision repeatability) samples. In this 
equation, for 7 replicate samples, t = 3.143, so MDL = 3.143 times the sample (n-1 
version) standard deviation for the 7 replicate measurements of a blank.  

The same equation was used in the APHA Standard Methods Book definitions of 
a MDL, and by many states and others. The MDL is usually said to be the lowest 
concentration we really believe with 99% confidence is different than zero. The "different 
than zero" part calls for a one-sided statistical comparison, which is why we use the one-
sided critical t-value. The same EPA equation is usually used to estimate estimated 
detection limits (EDLs), but with fewer steps than one uses in estimating a MDL. Thus 
MDLs and EDLs are not usually the same value. Calculating EDLs is most often a 
preliminary step on the way to estimating MDLs. EDLs are often calculated with low-
level standards or solutions rather than blanks. 

When blanks never produce detectable signals, it is common to estimate MDLs in 
samples with the lowest possible levels where a signal can be detected (EPA, 2003, 
Technical Support Document for the Assessment of Detection and Quantitation 
Concepts." 

To avoid confusion, alternative semi-quantitative detection limits (EDL, LOD, 
IDL, LLD, etc., see Part B for details) should ordinarily not be used instead of the 
standard EPA MDL. The exceptions include:  
 

Some USGS labs have used the standard MDL, but the large NWQL USGS lab in 
Denver that produces a large amount of data for the USGS has typically used the 
Long Term MDL (LT-MDL) instead of a more standard MDL. For NWQL data, the 
LT-MDL should be listed along with how and how often it is calculated (The USGS 
NWQL used f-pseudosigma rather than a standard deviation from 1999-2005, then 
went back to using the standard deviation, although some details in the calculation of 

http://www.epa.gov/fedrgstr/EPA-WATER/2003/March/Day-12/w5711.htm
http://www.epa.gov/fedrgstr/EPA-WATER/2003/March/Day-12/w5711.htm
http://www.epa.gov/fedrgstr/EPA-WATER/2003/March/Day-12/w5711.htm
http://www.apha.org/
http://standardmethods.org/
http://www.epa.gov/fedrgstr/EPA-WATER/2003/March/Day-12/w5711.htm
http://www.epa.gov/fedrgstr/EPA-WATER/2003/March/Day-12/w5711.htm
http://www.epa.gov/fedrgstr/EPA-WATER/2003/March/Day-12/w5711.htm
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc


 131

a LT-MDL were still different than a standard MDL). The LT-MDL requires a 
sample size of at least 24 rather than 7 (see Long Term Detection Levels and earlier 
more detailed discussion at Open-File Report 99-193.pdf). From 1999 to 2005, USGS 
substituted a “f-pseudosigma” instead of a normal sample standard deviation, both for 
LT-MDL calculations and for control charts. Most 1996 and later data from the 
NWQL is based on LT-MDL calculations that no longer use F-Pseudosigma (which 
was seen to reduce variability too much and to not be necessary since most of the data 
from repeat measures was close enough to normal to allow use a standard deviation, 
and since alternative ways were developed to handle outliers). 
 

Note: The F-pseudosigma is a nonparametric statistic analogous to the standard 
deviation that is calculated by using the 25th and 75th percentiles in a data set. It 
is resistant to the effect of extreme outliers. Specifically, to get the F-
pseudosigma, one subtracts the 25th percentile from the 75th percentile to obtain 
the inter-quartile range (IQR) magnitude and divides the result by 1.349 (Long 
Term Detection Levels).   
 

If there is no good way to calculate or find a MDL but an estimated detection limit 
(EDL) can be found or logically calculated (sometimes the case for bacteria or 
chlorophyll) and calculated, the EDL can be defined and used. Some labs basically let 
electronic instruments define detection limits, since some instruments censor low 
level values in the noise range (below calibration curve limits). If this is the case, 
exactly how the semi-quantitative detection limit was determined, and why standard 
MDL calculations were not made, should both be documented in the sensitivity 
section of the QA/QC SOP.  

 
NEMI sometimes gives the lower end of the calibrated range as a “range-derived” 

lower detection limit, and this or some other rough estimate of a MDL might be used in 
QC tables when bad precision when measuring close to a MDL does not require a more 
stringent calculation of a proper low-level MDL.  

In cases where one is always two or more times above the MDL and never 
encounters really poor precision from measuring too close to a MDL, alternative 
measurement sensitivity (either AMS or AMS+) should be periodically calculated and 
reported. 

How low should MDLs be? Labs picked should be able to achieve a semi-
quantitative MDL detection limit lower than the lowest water quality standard (including 
chronic standards) or other chronic exposure threshold benchmark of concern [reference 
doses --- RfDs, No Effect Levels such as No Observable Adverse Effect Levels or No 
Effect Concentrations (NOAELs, NOECs), or any other “safe level” benchmarks]. 
Optimally MDLs should be at least 1.6 to 2 times lower than the lowest of any such 
benchmarks that can be found. 

Minimum Level of Quantitation (ML) 
 

Unless otherwise justified, define and calculate the minimum level of quantitation 
detection limit as 3.18 times the MDL. The resulting value is the same as the (low level) 

http://bqs.usgs.gov/ltmdl/
http://water.usgs.gov/owq/OFR_99-193/ofr99_193.pdf
http://bqs.usgs.gov/ltmdl/
http://bqs.usgs.gov/ltmdl/
http://www.nemi.gov/
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lower quantification limit (LQL, a STORET-specific term), but it is suggested that the 
ML terminology be used rather than LQL except when dealing with STORET. In 
previous versions of Part B, this detection limit was referred to as a PQL, but 2003 EPA 
guidance documents make it clear that the ML (as 3.18 times the MDL) is a better default 
term for the quantitative limit Technical Support Document for the Assessment of 
Detection and Quantitation Concepts.  

The ML is typically very close or sometimes a bit lower that the also often-used 
limit of quantification (LOQ). The LOQ is normally 10 times the standard deviation 
(SD), the MDL is 3.134*SD and the ML is 3.18*MDL. So for most practical purposes 
the LOQ and ML are basically the same (3.134*3.18 = 9.99 = about 10 = value used for 
LOQ).  

A more elaborate definition of the ML including rounding rules is also contained 
therein. The 2003 EPA document also explains that the ML is "the lowest level at which 
the entire analytical system must give a recognizable signal and acceptable calibration 
point for the analyte. It is equivalent to the concentration of the lowest calibration 
standard, assuming that all method-specified sample weights, volumes, and cleanup 
procedures have been employed.  

As explained in EPA 2003, some of the criticisms of the MDL and ML relate to 
single lab vs. multi-lab comparisons. If a network needs to do so because it is dealing 
with multiple labs or cannot achieve quantitative detection limits at 3.18 times the MDL, 
the network could alternatively define a multi-lab PQL as 5 (rather than 3.18) as 
suggested in the Standard Methods Book. Just make it clear that the PQL detection level 
is a multi-lab achievable rather than a single lab quantitative limit. 

In the context of a single lab, there are disadvantages for using 5, and it should be 
a justified the exception rather than a default choice. Using 5 would result in being able 
to report fewer low level values (see following section). Also, some EPA methods 
specify the use of 3.18. Top experts in the field now consider 3.18 to be sufficiently high 
to protect against false negatives, to be the value most commonly used, and to have other 
advantages over 5 (for details see Part B, or D. Helsel. 2005. Nondetects and Data 
Analysis: Statistics for Censored Environmental Data). 

 To avoid confusion and for NPS standardization, use the ML rather than 
alternative quantitative detection limits phrases or acronyms. It is easy to become 
confused in the alphabet soup of the great many alternatives. Alternatives include 
practical quantitation limits (PQLs), minimum reporting levels (MRLs), reporting levels 
(RLs), limits of quantitation (LOQs), minimum quantitation limits (MQLs), sample 
quantitation limits (SQLs), Contract-Required Quantitation Limits (CRQLs), or an inter-
laboratory quantitation estimate (IQE). These and many other variations are explained in 
EPA 2003. Instead of using these terms, convert all such quantitative limits to MLs.  

There are two exceptions where terms other than the ML can be used: 
 

1. When dealing with STORET, the phrase “lower quantitation limit” (LQL) 
can be considered a synonym for a ML. 

2. If a USGS lab is used, the USGS alternative to the ML, the laboratory 
reporting level (LRL) may be used instead of the ML. The LRL is defined 
as two times the USGS LT–MDL (USGS. 1999. OFR 99-193). If the 

http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://www.epa.gov/EPA-WATER/2004/November/Day-08/w24823.htm
http://www.epa.gov/EPA-WATER/2004/November/Day-08/w24823.htm
http://www.epa.gov/EPA-WATER/2004/November/Day-08/w24823.htm
http://www.epa.gov/EPA-WATER/2004/November/Day-08/w24823.htm
http://standardmethods.org/
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471671738.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471671738.html
http://www.epa.gov/EPA-WATER/2004/November/Day-08/w24823.htm
http://water.usgs.gov/owq/OFR_99-193/level.html
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network is going to use USGS LRLs, explain how and how often they will 
be calculated and reported.  

 
No matter what quantitative detection limits are used, how they are calculated 

should be explained in the sensitivity/detection limit part of the QA/QC SOP. Once 
monitoring begins and new data is put in STORET, it should also be put in STORET 
metadata, as explained in the next section.  

For toxic chemicals, it is particularly important that the lab can achieve ML 
quantitative detection limits that are below the benchmark, water quality standard or 
criteria, or other threshold levels known to be associated with harmful effects. 

How Will Values below the MDL or ML be Reported and 
Analyzed? 

 
Although this topic should be explained in the Data Analysis SOP attached to 

each protocol narrative, it is discussed here to keep it close to the discussion of detection 
limits (just above).  

This topic could also be discussed in the sensitivity/detection limit section of the 
QA/QC SOP attached to each protocol. 

Regardless of which SOP contains the discussion, there should be links back to 
the other for clarity, and the discussion should explain how data below any of the listed 
detection limits will be handled, not only for reporting into data bases, but also for data 
analyses. Along with how missing values will be handled (see completeness), how values 
below various detection limits will be handled should also be covered in the data analysis 
SOP. 

One acceptable option (and one already adopted by some VS networks) is to state 
that the recommendations in the recent Helsel Book (D. Helsel. 2005. Nondetects and 
Data Analysis) will be used. Among other things, this book explains why one should not 
substitute one-half the detection limit for nondetects. For a brief Web available 
explanation, see “Why substituting one-half for less-thans is a really bad idea.” 

NPS data needs to go into STORET, and Helsel (Nondetects and Data Analysis) 
considers the modernized STORET default recommendation for writing to a database to 
be fully acceptable. Therefore, we are adopting this as a default NPS recommendation. 
Modernized STORET and NPSTORET both suggest that we not report into a database 
any value higher than the MDL but lower than the ML. Instead, the detection condition 
field is set to "Present, below Quantification Limit."  With that detection condition, 
STORET automatically enters "*Present <QL" in the result field. A major advantage of 
this approach is that no "estimates" are treated as quantitative when they are not 
quantitative. NPSTORET is consistent. 

A Kaplan-Meier calculation option for handling nondects is available as an easy 
option to users of NPSTORET. Nondetect data (below the ML) are transformed 
(censored) to Kaplan-Meier transformed values first, and then certain summary statistics 
(mean, median, minimum, maximum, standard deviation, and percentiles, but not 
confidence intervals) are calculated in NPSTORET. 

Those networks and parks that do not already have NPSTORET, and/or those 
who wish to do statistics other than those listed above can handle nondetects with the 

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471671738.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471671738.html
http://www.practicalstats.com/news/newsnada/files/Spring03_HalfBadIdea.pdf
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471671738.html
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Kaplan-Meier techniques with a free KM MS Excel worksheet available from 
PracticalStats.com. Therein, Kaplan-Meier is a simple procedure that estimates the mean, 
standard deviation, median, 25th, and 75th percentiles, and the (t-interval) 95% upper 
confidence limits (UCL) for censored data. It is not a macro, just a simple worksheet, to 
minimize the possibility of viruses, etc.  It has been checked and found clean by Norton 
Antivirus. It is limited at present to data at 100 different values - there may be multiple 
observations at each value, however. It 'flips' the data and performs all processing, so you 
simply put in the values and get back the results. If you find it useful, cite the source as 
PracticalStats.com when presenting or publishing results.   

In (eventual) statistical analyses, values between the MDL and ML are best 
interpreted using either an interval-censored method (parametric) or a rank-based method 
(nonparametric). In the latter, all in-between values are represented as the same tied rank. 
The older recommendation of censoring to half the MDL is clearly no longer 
recommended.  

For reasons consistent with both STORET and NPSTORET rationales, Helsel 
recommends that numerical values not be reported into data bases if the values are below 
the MDL or the ML, and that one should not report nondetects as half the detection limit. 
One should also not report nondetects as a negative (minus or -) sign followed by the 
actual MDL value, because someone invariably decides it really is a negative number 
(Nondetects and Data Analysis).  

These recommendations are all followed in NPSTORET, which will not allow 
entry of values below the ML. The MDL and ML limits are entered into NPSTORET, 
and by using STORET detection condition coding results, one can find out how many 
values were below the MDL or between the MDL and ML. 

Values above the ML are classified in EPA’s modernized STORET database with 
the detection condition of “Detected and Quantified” This is ideal, and according to EPA 
STORET Staff, this is optimally the only choice which permits reporting a single 
number.  

Although not recommended in the Helsel book (Nondetects and Data Analysis), 
for the special case of NPS analyses of “precautionary principle” comparisons with 
standards or criteria, one might choose to censor all data below the ML to the exact value 
of the ML, but that is only a very special (worst-case, trying to be very precautionary and 
totally avoid false negatives) example of a data analysis strategy, and one would never 
substitute the value of the ML in a long term network storage data base field for 
measured concentrations. 

Alternative Measurement Sensitivity (AMS) and AMS+ 
 

AMS and AMS+ are alternative ways to control and document measurement 
sensitivity at the QC level when low level detection limits (like MDLs) are not needed.  

In the case of field measurements (pH, specific conductance, etc.) using electronic 
instruments, in the past if you asked someone:  
 

“Since some differences between data points are small enough to be considered 
simply the result of measurement process noise (random up and down 

http://www.practicalstats.com/nada/nadafiles/files/KMStats.xls
http://practicalstats.com/
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471671738.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471671738.html
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measurement error) rather than a true difference, how small does a measured 
change have to be before you consider the difference to be real difference?”  

 
The response might be to point to a manufacturer’s “resolution“ specification. For some 
biological or physical habitat observations, they might have even fewer ideas.  

AMS is standardized solution and also a better term to use than the word 
resolution, a word that tends to mean many different things in water quality monitoring 
(each instrument manufacturer seems to estimate “resolution” differently). Also, for QC 
one needs to estimate actual performance in the field, rather than rely on a specification 
that relates to ideal performance in a lab. QC is performance-based, and if the 
measurements are done in the field, then the actual measurement performance should be 
estimated and controlled under field conditions as well. 

In past laboratory analyses for low-level contaminants, sensitivity was often 
controlled by reporting MDL detection limits. In past laboratory analyses for higher level 
variables, no other control of sensitivity was commonly attempted. For many biological 
or habitat variables or estimates, measurement sensitivity was simply not controlled. 

However, measurement sensitivity is an important QC topic and the need to 
control sensitivity does not disappear just because one never or seldom encounters very 
low-signal-strength or nondetect values. For vital signs monitoring in both the field and 
lab, we therefore suggest, that for any situation where low-level MDL detection limits are 
not optimal ways to control sensitivity, QC measurement sensitivity be estimated as 
AMS. 

Just as measurement quality objectives for precision and bias should be listed in a 
summary table in the QA/QC SOP or QAPP, so should measurement quality objectives 
be listed for AMS or AMS+ any time that MDL and ML detection limits are deemed 
inadequate to control sensitivity by themselves.  

AMS calculations use a sample size of 7 and a confidence level is 99%, to be 
most functionally similar to MDLs.  

AMS calculations address the “two-sided” issue of how large of a difference 
between two measured values can be before we are 99% sure it is a true difference. For 
contrast, MDLs address the “one-sided” issue of how large a measured magnitude is 
before we can consider the value as a true “detection” (99% sure it is different than zero).  

AMS calculations therefore use the “critical (two-sided) t-value” because we are 
not just interested in one-directional measurement sensitivity. MDL calculations use the 
“critical (one-sided) t-value.”  

 
Note: Those not familiar with critical t-values should read this paragraph. One-
sided is a synonym for one-tailed. Two-sided is a synonym for two-tailed. In past 
versions of Part B lite, we have used the phrase “middle t-value.” Although this 
phrase may help some visualize the distribution and choose the right one in the 
user-friendly SurfStat Australia calculator, a more technically correct (and more 
common) way to say this is to not refer to the middle t-value at all but rather to 
call it the “two-sided critical t-value” or the “two-tailed critical t-value.” 
Therefore we have discontinued using the phrase “middle t-value.” To see how 
the “two-tailed critical t-values” change according to sample size and confidence 
levels, see the t -distribution calculator. To calculate the proper value for sample 

http://www.anu.edu.au/nceph/surfstat/surfstat-home/tables/t.php
http://www.anu.edu.au/nceph/surfstat/surfstat-home/tables/t.php
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size 7 (DF = 6), type in 6 under the DF column, choose the two-tailed critical t-
values choice (the middle of the distribution is red, choose the third distribution 
from the right), and then to get 99% confidence for two-sided cases, type in 0.99 
under probability. Next, click on the left arrow and the answer 3.708 appears 
under the t-value (actually the two-tailed critical t-value) column.   

Difference between AMS and NIST Expanded Uncertainty 
 
There is no difference. AMS is simply one specific special case of the standard 

National Institute of Standards and Technology (NIST) methods and consistent Standard 
Methods Book methods to calculate “expanded uncertainty.”  The reason we call this 
estimate AMS, instead of expanded uncertainty, is that it is a special case of expanded 
uncertainty, the case where sample size is always seven (DF = 6) and confidence is 
always 99%.  

Again, the reason for specifying these two conditions is to make this special case 
of expanded uncertainty as analogous to a MDL (except for the two sided vs. one sided 
difference) as possible 

 Just as confidence intervals express the uncertainty about a mean of many 
different data points, AMS can be used to estimate the interval of uncertainty around each 
single data point, recognizing that no single data point is perfect.  

In cases where MDLs are not optimal, the NPS default suggestion is to calculate 
an AMS based on NIST expanded uncertainty using a sample size of 7 and 99% 
probability. This satisfies two needs at the same time: 1) the need to control measurement 
sensitivity when in the normal quantitative measurement range and 2) the practical 
institutional need to have a plus or minus value to put in the STORET “analytical 
procedure description” text box.  

Ideally AMS should be estimated using an extra (not used in calibration) certified 
reference material (CRM). Such information would be useful for a third purpose, to 
estimate measurement “accuracy/” Accuracy needs to factor in both bias and precision, 
and AMS based on seven measures of a CRM could be used as one initial (a bit rough 
due to the sample size being only 7) estimate for “accuracy.” 

Difference between AMS and MDL 
 

To estimate a MDL, one takes the Standard Deviation of 7 measurements of a 
blank or other very-low-signal strength sample times the one-sided critical t-
value for 99% confidence (3.18).  
 
To estimate an AMS, one takes the Standard Deviation of 7 measurements of a 
normal sample (with a signal in the quantitative range) times the two-sided 
critical t-value for 99% confidence (3.708).  
 
The following are examples of scenarios in which we might choose to control 

sensitivity as AMS rather than as a low level detection limit such as a MDL: 
 

http://physics.nist.gov/
http://standardmethods.org/
http://standardmethods.org/
http://physics.nist.gov/Document/tn1297.pdf
http://physics.nist.gov/
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In outdoor environments, temperature usually has a strong enough signal to 
enable us to measure temperature quantitatively in all cases. One would basically 
never be reporting temperature as below some predetermined MDL or ML 
detection limits. In this case, low level detection limits are somewhat irrelevant or 
at least are not a very relevant sensitivity QC data quality indicator. 
 
When measuring conductivity in the field or when making biological or physical 
observations in the field, one usually always has a reported value rather than a 
nondetect, but controlling measurement sensitivity is a still a QC basic that should 
not be ignored. In these cases sensitivity could be controlled as AMS.  

 
On the other hand in some biological settings (like listening for often faint bird or 

amphibian calls), low level sensitivity is appropriate and MDLs should be calculated. 

Difference between AMS and AMS+ 
 
The difference between AMS and AMS+ is that AMS is based on 7 replicate 

measures of one sample, while AMS+ is based measures of 7 measures of different 
samples, though the AMS+ samples are typically not separated by much time or space. 
We don’t call these “field duplicates” (as some do) because we want to make it clear they 
are not identical samples, though they are often very similar. 

Difference between AMS and Precision 
 
Briefly, sensitivity as AMS or AMS+ are similar concepts to precision and 

precision+, but AMS and AMS+ are less frequently measured and based on a higher 
sample size (7 measurements, same as for MDL sensitivity, to get 99% confidence 
levels). Precision QC samples are not based on a 99% confidence level but are more 
frequently estimated (usually every 20 measures) QC precision is estimated with a 
lower sample size (usually two but sometimes three). Precision estimates are usually 
expressed as RPDs or RSDs, whereas AMS estimates (like MDLs or MLs) are in original 
units of measure. For more detail, see discussion of Precision Versus Sensitivity. 

Do We Need both AMS and MDLs? 
 
Only in certain cases: If one is measuring some values at very low levels, 

including some below MLs, and some other levels in the middle of quantitative range 
above MLs, then one needs both AMS and MDLs to cover QC sensitivity in both ranges. 

If one is only measuring quantitative levels above MLs, then one needs only AMS 
or AMS+. If one is measuring only very low levels, where most results are below or near 
the ML, then one need control sensitivity only with MDLs and MLs.  

Why not just use the AMS case of expanded uncertainty for all cases, including 
low-level detection limits? NIST has acknowledged that standard NIST methods to 
calculate “expanded uncertainty” (of which AMS is just one variety) are not applicable 
for very low (below quantitative-ML detection limits) ranges of measurement (N. Taylor 
and C. E. Kuyatt. 1994. Guidelines for Evaluating and Expressing the Uncertainty of 

http://physics.nist.gov/
http://physics.nist.gov/Document/tn1297.pdf
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NIST Measurement Results NIST Publication TN 1297). MDLs answer a different 
sensitivity issue (different than zero rather than different from another data point).  

Why not just calculate MDLs for everything? The answer is that MDLs are 
simply not applicable for some scenarios. If no very low magnitude signals are being 
measured, then sensitivity in that range is irrelevant and zero-value or very low level 
calibration solutions would also not be relevant to the measurement ranges of interest. 
Also, in some cases (pH, temperature, and many biological or physical habitat 
observations, for example), no blank or other zero-value or extremely-low value 
calibration solutions (or habitat or biological considerations) are readily available, so one 
would have a difficult time calculating a MDL even if one tried.  

AMS and AMS+ Reporting in STORET 
 
AMS results are not recorded in STORET detection limit fields. Instead, they 

should be recorded in the STORET metadata “analytical procedure description” text box.  
If measurement precision as repeatability is very good, the AMS result for a 

single data point might be something like 45.676 plus or minus 0.003. In the more 
common (for field monitoring) scenario where sensitivity is not that good, the result for a 
single point might be reported as something more like 50 plus or minus 30.  

Either way, the result can be entered into STORET in the plus or minus field for 
“precision” in the CHEMICAL DATA RESULT ENTRY BOX. Bounding uncertainty in 
this way is a more modern and defensible alternative to using rounding rules to decide 
how many significant figures one should carry in final result. 

Can one list both low level detection limits and alternative measurement 
sensitivity for field measurements? Yes, as explained above, there are separate places in 
STORET to put both results. Whenever one may encounter very low concentrations in 
some cases and higher levels in others, it would be optimal to do both.   

Is it OK to use the lower end of the applicable measurement range (in 
manufacturer’s specifications) as an estimate of the MDL and for reporting AMS to 
STORET? No. This is not ideal and should never be done if the lower end of the 
specification range is zero. Doing this would never be recommended where true MDLs 
are needed (for toxics or very low-level nutrients in very pristine lakes). In these cases, 
proper MDLs and MLs should be calculated. Zero is never a correct answer. 

What if one is always measuring values well above the lower end of the range and 
does not encounter really bad precision? This is one scenario where an AMS is 
appropriate. In this scenario, one would expect to be able to meet precision MQOs. Bad 
precision would be indicated when the field instrument will not settle down on one 
reading but just keeps changing, even after a reasonable period has been allowed for the 
instrument to settle down. Really poor precision may be an indication of an instrument or 
calibration problem, but it can also be a clue that one may unknowingly be measuring 
values no greater than 2 x an estimated MDL. If it turns out that one is sometimes 
measuring that close to a MDL, estimating a proper MDL would be appropriate.  

Although we recommend they be documented in NPS QA/QC SOPs, MDLs and 
MLs are only required in NPSTORET if one reports the detection conditions of either 
“Not Detected” or “Present, below Quantification Limit.” So, if one never encounters this 
scenario (never being below ordinary detection limits), one need not enter a MDL or ML 

http://physics.nist.gov/Document/tn1297.pdf
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into NPSTORET (or in STORET). In this case, one should simply calculate and report a 
more appropriate type of sensitivity (AMS or AMS+) in the QA/QC SOP and in 
subsequent QC reports and updates).  

Censoring AMS Values 
 
Unlike the MDL or ML, historically data has typically not been censored based on 

AMS or other expanded uncertainty values. However, as a statistical analysis strategy for 
looking at a single data point only, one could take the worst case end of the range. For 
example, suppose the highest pH value considered safe was 9.0 and the only piece of 
information available was a single value measured was 8.9 plus or minus 0.3. Single 
values are anecdotal, but one might say the single value could be as high as 9.2 and 
therefore might exceed the criteria. This would simply be reason to take more measures. 
If one has multiple values, poor measurement sensitivity simply increases variability and 
the magnitude of confidence intervals about means or other summary statistics, so there is 
no need to censor the values. 

AMS in Biology and Habitat Observations 
 
Many biological inventory and monitoring projects have not historically estimated 

measurement sensitivity. However, there is usually no reason why one could not calculate 
AMS after measuring one sample 7 times (or perhaps have one sample measured by 7 
different bio-technicians). It may take some ingenuity in difficult cases. In the case of 
destructive sampling, it may require a sampling nearby areas rather than re-measuring 
one identical sample. In the same way we study precision+, we may need to estimate 
“AMS+” in some cases, where measuring one sample repeatedly is impossible. As long 
as an AMS+ estimate reflects little variability (below measurement quality objectives, the 
sensitivity of the measurement process is also well controlled. If AMS+ is high, more 
study would be needed to find out if the extra variability is from the measurement process 
or from potential true variability of near but not-identical samples (the + part). 

With careful thought, it should usually be possible to develop a common-sense 
way to adapt the AMS, AMS+ or MDL functional analogs for various types of biological 
monitoring. The key is to try do so in a way that “makes sense” while still addressing the 
issue of logically estimating and controlling measurement sensitivity.  

How Often Should AMS or AMS+ be Calculated? 
 
At minimum, AMS (based on one sample) or AMS+ (based on nearby 

replicates) should be calculated no less than once a year or whenever methods or 
instruments change. This is analogous with our related recommendation that MDLs (a 
special case of very-low-signal strength sensitivity) be calculated no less than once a year 
or when methods or instruments change.  

AMS+ is an optional QC measure which combines two steps into one, but if the 
results exceed pre-determined AMS measurement quality objectives, one may then have 
calculate AMS as well in order to decide if the excess variation was due to true variability 
of the nearby samples or lack of good sensitivity of the measuring instrument.  
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Alternatively, networks may specify that AMS will be calculated and reported no 
less than at least once every sampling season or at least as frequently as MDLs. It is 
important to understand that until a reasonably consistent range, standard deviation, and 
average for the 7 sample samples is developed, it should probably be done more than 
once a year.  

Like MDLs, AMS should also be re-calculated when something significant in the 
measurement process changes. For example, if the person measuring, the measuring 
instrument, or the methods or SOPs change, recalculate AMS to see if measurement 
sensitivity has changed. 

For contrast, one typically estimates QC “precision” more often (often every 20 
samples or once a day) rather than once or twice a year.  

Getting seven measures fairly quickly is especially easy when continuous 
monitoring multi-parameter measuring systems (herein, “sondes” for short). See the next 
section for related tools and discussion. 

AMS Tools: 
 
A Northern Colorado Plateau Network (NCPN) staff member has developed some 

tools helpful for calculating AMS more frequently, including some MS Excel Templates 
to make calculations of AMS and some other QC metrics easier. The following was 
suggested by NCPN staff (Dave Thoma, NPS, Personal Communication, 2007): 

 
If users take 7 measurements in a well mixed stream they get the data needed to 
calculate AMS+.  If the stream is not well mixed the standard deviation of 
measurements should indicate this.  So there are two good reasons to take at least 
7 measurements at a site. Also, calculating AMS or AMS+ sensitivity on data 
collected several times during each field season will give a more complete picture 
of instrument sensitivity over time. Doing this is not as much trouble as some 
might first think. Sensitivity (and bias) metrics can be calculated for every field 
run if field staff simply take 7 measurements for each core parameter during 
pre-mobilization final instrument checks (for AMS) and 7 measurements of 
close but not identical samples at each field site (for AMS+). One could also 
calculate AMS by simply measuring one homogenous sample (or a split sample) 
seven times. If one had planned to take only one measurement, 6 more could be 
taken in only about a minute and a half. Why would anyone take just one sample, 
after all the effort expended to reach field sites? Our experience in well mixed 
streams is that the following AMS rejection criteria are almost always met in the 
field in an "AMS+" setting.   For individual streams or rivers, less stringent 
AMS+ criteria could be developed for systems that are not as well mixed. 
 
NCPN AMS Measurement Quality Objectives, Pre-mobilization AMS Stage: 

 
 CORE 

 PARAMETER 
 Sensor AMS MQO 

(acceptance/rejection criteria) 
Optimum Goal/Target (Range) 

 (USGS criteria) 
Temperature ± 0.3 º C  ± 0.2 º C 
Specific Conductance ** ± 5 µS/cm or ± 3% * ± 5 µS/cm or ±3% * 
pH  *** ± 0.3 S.U. ± 0.2 S.U. 
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Dissolved Oxygen  ** ± 0.4 mg/L, ± 5% saturation ± 0.3 mg/L, ± 3% saturation 
 

*Whichever is greater. 
** Parameter values (SC and DO) may be affected by 2 to 3% with each degree 
change in temperature. 
*** If after a 2–point calibration and performance of any necessary pH sensor 
maintenance, error criteria are still not met, a 3-point calibration should be performed 
before sensor is rejected and replaced. 
 
For more detail, see the latest Northern Colorado Plateau Network SOPs (intranet site 
available to NPS computers only).  

 
Using the same thought process that "If one had planned to take only one 
measurement, 6 more could be taken in only about a minute and a half,” then perhaps 
we should expand our procedures to include the collection of seven AMS 
measurements at a single point (in the centroid of flow), at each site on a quarterly 
basis, in addition to the cross-sectional measurements to determine representativeness 
related to AMS+. The other helpful procedure that we have is our San Francisco 
Network (SFAN) use of data from our continuous-logging "sondes". Because this 
equipment is deployed in each watershed for a minimum of two weeks every season, 
this data can provide any number of data points to determine AMS. Also, we have 
instituted the additional procedure of taking seven measurements from the 
deployment cross-section of the stream site both at the time of deployment as well as 
at the time of removal (in addition to once mid-way through if the deployment lasts 
longer than three weeks.)  This allows for additional checks of AMS+, as well as a 
correlation for drift and offset for the "sonde" (Rob Carson, NPS, Personal 
Communication, 2007). 

 
With continuous monitoring sondes, which are more expensive to start with but 

tend to save money over time, one can easily record a snap (instantaneous) 
measurement at one spot, then move around the stream and record additional snap 
measurements, or measure at defined intervals in time (or space if a cross section) to get 
six additional measurements at slightly different locations. Such AMS+ samples would 
be different but often not much different since they are not separated much by time or 
space. Such a procedure would give one the seven values one needs to calculate AMS+.  
The seven values can easily be automatically recorded with the sonde system, stored by 
site and then downloaded back at the office, where they can then be used to quickly 
calculate AMS+ (or AMS if only one split or homogeneous sample is measured) using 
the tools discussed just above.. 

Resolution 
 
In water quality applications, resolution seems most often to refer to some poorly 

defined notion loosely related to the fineness of the measurement scale. Beyond that, 
little seems standardized. It is typically not acceptable to use the “resolution 
specifications” of the manufacturer of a field meter for AMS, a low level detection limit 
like a MDL, or for precision. There are hints that what many meter, probe, or sonde 

ftp://ftp.den.nps.gov/incoming/BRCA/Formatted/SOP_07_QAPP_all_units_0407.doc


 142

manufacturers call resolution in some cases is perhaps some form of uncertainty analysis. 
However, the lack of consistency between manufacturers regarding how resolution is 
estimated. This prevents us from calling resolution a synonym for either AMS or some 
other form of expanded uncertainty.  

This lack of consistency might be one reason that the word “resolution” is not 
typically seen in environmental quality assurance project plans (QAPPs). In any case, 
“resolution specifications” tend to be optimistic values that do not correspond well to 
real-world field precision or sensitivity. Sometimes, resolution specifications seem to 
have been developed at least partly for competitive advantage in ideal lab situations. So, 
to document measurement sensitivity in the actual environment being monitored, one still 
has to measure actual field performance for AMS, some other form of expanded 
uncertainty, or low-level detection limits like MDLs. 

The United Kingdom has done more to standardize how resolution of measuring 
meters is calculated, and they tend to emphasize methods generally consistent with AMS 
and uncertainty as defined by ISO and NIST (UKAS, 2007, The Expression of 
Uncertainty and Confidence in Measurement). AMS is simply a two-sided special case of 
expanded uncertainty that is otherwise analogous to (one-sided) MDL detection limit 
measurement sensitivity, the most common way to report measurement sensitivity in the 
US. 

Until sensitivity methods are more standardized in the US, we recommend that 
the word resolution not be used in planning water monitoring. Those who have used the 
word resolution loosely in the US have often been talking about other more commonly 
understood QC concepts, such as precision, expanded uncertainty, sensitivity, various 
detection limits, or AMS. Since these concepts are defined in detail separately herein 
and/or tend to be more universally understood and defined by groups like NIST and ISO, 
there is typically no need to address the concept of resolution separately in water quality 
or contaminants QAPPs or QA/QC SOPs.  

Certain GIS/Remote sensing and non-linear biological categorization applications 
may be exceptions. In remote sensing, the word resolution is often used for a concept 
more broadly recognized in other disciplines as sensitivity. In any case, whenever the 
word resolution is used, how it is estimated should be defined in detail. 

 
IX. Measurement Precision 

 
Precision is simply the variability of the different observations or measurements 

(of the same thing) when compared to each other. Generally speaking, precision checks 
should only be run on concentrations above the quantititative low-level detection limit, 
the ML (3.18 times the MDL, the semi-quantitative detection limit). Any concentrations 
within 2 times the MDL will have terrible precision (up to 200% RPD, the maximum a 
RPD can be mathematically), so one does not expect good precison very close to a MDL. 

As with many other QA/QC topics, the word “precision” has often been used 
incorrectly in water quality, contaminants, or statistical literature. It has too often been 
used for concepts other than variability in measures of one object. For example 
statisticians have tended to use the word for the size of a confidence interval or for 
accuracy. Such usages of the word precision should be discouraged to prevent confusion. 
In concert with NIST/ISO worldwide scientific consensus definitions, precision is about 

http://physics.nist.gov/Document/tn1297.pdf
http://physics.nist.gov/Document/tn1297.pdf
http://physics.nist.gov/Document/tn1297.pdf
http://www.iso.org/iso/home.htm
http://physics.nist.gov/
http://www.ukas.com/library/downloads/publications/m3003.pdf
http://www.ukas.com/library/downloads/publications/m3003.pdf
http://physics.nist.gov/Document/tn1297.pdf
http://physics.nist.gov/Document/tn1297.pdf
http://physics.nist.gov/
http://www.iso.org/iso/home.htm
http://physics.nist.gov/
http://www.iso.org/iso/home.htm
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variability (scatter), and is clearly not synonymous with confidence, uncertainty in 
general, or accuracy. 

Measurement precision (actually imprecision, but according to tradition and 
common practice most ignore that) is the variability of repeated independent measures of 
the same object. ISO defines precision as “the closeness of agreement between 
independent test results obtained under prescribed stipulated conditions.” Prescribed 
conditions are usually either repeatability or reproducibility, as explained in the next 
section. In any measurement process, precision is not perfect because of random (up and 
down) imperfections in the measurement process. Unlike systematic error/bias, precision 
does not depend on the true, right, or expected values, but is just about variability. 

Repeatability or Reproducibility Precision? 
 
 NIST has helpfully clarified that the “prescribed stipulated conditions” should 
include documentation about whether the precision is “precision under repeatability 
conditions” (where nothing changes) or “precision under reproducibility conditions” 
(where something changes, see Guidelines for Evaluating and Expressing the Uncertainty 
of NIST Measurement Results NIST Publication TN 1297).  

Express Precision Results in These Ways: 
 

 Unless otherwise justified, for the common QC sample size two (duplicate 
measures of the same thing) applications, we recommend that precision continue to be 
reported as a relative percent difference (RPD) as suggested by the interagency 
Environmental Data Standards Council (EDSC) 2007 Internet Summary on QA/QC. A 
RPD is simply the absolute value (no negative signs or positive signs) magnitude of the 
difference between two values, divided by the average of the two values, then multiplied 
by 100 so that the result can be expressed as a percent (EDSC. 2007. Quality Assurance 
and Quality Control Data Standard).  

For sample sizes of 3 to 6, precision performance, by common convention, should 
instead be reported as a relative standard deviation (RSD). Precision performance could 
also be expressed as a sample (n-1 version) standard deviation, but this has not been done 
commonly in water quality or contaminants work so would be strictly optional. 

For sample size of 7 (not commonly done for QC control of precision), we 
suggest that AMS be reported and that it be called AMS rather than precision. 

For sample size of more than 7 (again, not commonly done for QC control of 
precision), we suggest that expanded uncertainty be reported and that it be called 
expanded uncertainty rather than precision. 

Regardless of which summary statistic is used to report precision (usually RPDs, 
but sometimes RSDs), the QA/QC SOP should state that the raw numbers will also be 
reported into NPS data bases so that in the future others can look at the precision from 
different angles. For both STORET and NPSTORET, enter the results for all analyses 
and their replicates (including duplicates if sample size is 2).  The first set of results 
should be assigned an ‘activity category’ (or ‘type’ for NPSTORET) of 'Field Msr/Obs' 
for field data or 'Routine Sample' for lab data. The activity replicate(s) of the first activity 
will then be identified as 'Quality Control Field Replicate Msr/Obs' for field replicates or 

http://www.iso.org/iso/home.htm
http://physics.nist.gov/
http://physics.nist.gov/Document/tn1297.pdf
http://physics.nist.gov/Document/tn1297.pdf
http://www.envdatastandards.net/content/article/detail/646
http://www.envdatastandards.net/files/705_file_QA_QC_01_06_2006__Final_.pdf?PHPSESSID=452a9c2a6f190da52c048e91bb81f2a4
http://www.envdatastandards.net/files/705_file_QA_QC_01_06_2006__Final_.pdf?PHPSESSID=452a9c2a6f190da52c048e91bb81f2a4
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'Quality Control Sample-Field Replicate' or 'Quality Control Sample-Lab Duplicate' for 
lab replicates (duplicates). Consult the STORET and NPSTORET documentation for 
other types of replicate activities/samples.  Calculated precision summary statistics 
(RPDs or RSDs) can be entered along with each result. How this will be handled could be 
put in a separate STORET table (see example herein) or as part of a larger QC table (see 
next section). 

Put Precision Details in a QC Table  
 
The following items to be included in a separate QC Table in the QA/QC SOP for 

each protocol: 
 

• A measurement quality objective (MQO) for precision, usually as a maximum 
RPD (RSD is sample size is three). 

• Make it clear in the table if precision is being controlled in the context of 
repeatability (nothing changes), reproducibility (something in the measurement 
process, often a person or instrument, changed), or reproducibility+ (the 
something that changed included the sample itself). If the details are too complex 
to put in the table, put the explanation in the precision text discussion section in 
the QA/QC SOP. 

• The data comparability source of the MQO (state, USGS, EPA-EMAP, RCRA, 
CERCLA, CWA, etc.)? If there is too much information to put this in the QC 
table, put the details in the comparability section of the QA/QC SOP 

• Frequency: Explain how often precision be calculated and reported (for example 
once every 20 samples). Regardless of the type of precision controlled, precision 
QC samples are usually performed as duplicate samples every 10-20 samples (or 
every sampling batch, or every field sampling day, or each laboratory batch).  
 
Standard precision measurement quality objectives (MQOs) can often be 

summarized in a QC table, usually along with systematic error, method detection limits, 
and blank control MQOs (see Table 9 of San Francisco Network (SFAN) freshwater 
quality protocol QA/QC SOP #4, for a good example). See also generic QC MQO tables. 

For chemical lab measurements, repeatability MQOs are typically used. However, 
if multiple labs, multiple instruments, or multiple staff members are doing the measuring, 
it becomes (precision in the context of) reproducibility rather than repeatability. 

Precision in the context of reproducibility is often very relevant for long term 
monitoring, since there will typically be changes in staff and instruments. Sometimes 
different staff and different instruments are even used by the same network during one 
season. In all cases where something in the measurement process changes, precision is 
controlled in the context of reproducibility. Changes should also trigger efforts to see if 
the changes introduced new measurement bias that needs to be documented in a 
cumulative bias SOP. 

Specify Precision MQOs as data Acceptance Criteria 
 

http://science.nature.nps.gov/im/units/sfan/reports/WQ/SOP4_QAPP_V2_01.pdf
http://science.nature.nps.gov/im/units/sfan/reports/WQ/SOP4_QAPP_V2_01.pdf
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Unless otherwise justified, the QA/QC SOP precision section should specify that 
precision MQOs specified in a QC summary table will be used as data 
acceptance/rejection criteria. Suppose the precision MQO for a particular parameter is 
that a RPD (of two values, duplicates) cannot exceed 30%. If the RPD exceeds that value, 
the QA/QC SOP should specify that all values associated with that batch (or that QC 
sample) will be discarded. Recalibration or other adjustments should then be done until 
the MQO can be met. When possible, new measurements should then be done to replace 
the data that was rejected for not meeting precision QC standards (the precision MQO). 

If data is to be used for regulatory purposes (and it is always nice to have data 
useful for multiple purposes, since it is expensive to collect), some states require 
precision MQOs to be acceptance criteria (See CA SWAMP example). What will be done 
if the MQOs are not met? How much data will be rejected? Usually it is all data back to 
the last time the MQO was met. Will it be all data associated with that batch, that trip, or 
that day? The rule of thumb is that all data associated with the failed QC performance 
standard (the MQO) will be rejected. 

Historically, many types of biological and physical habitat monitoring 
measurements have not been associated with attempts to control measurement precision. 
However, there is growing awareness of the need to do so. One can usually find a 
common-sense way to control and document measurement precision. Often one can 
simply measure something twice to get a duplicate answer in either a reproducibility or 
repeatability context. The acceptance criteria MQOs could be loose (even plus or minus 
50% or 100% RPD) until more experience is gained, but having no precision MQOs at all 
is no longer an option (do something). 

Precision+ 
 
“Precision+” is our NPS terminology for field duplicates when two or three 

samples that are not exactly the same are taken in close proximity in time and/or space. 
Since the samples may not be identical, the “+” part of the phrase is a tip off that an 
additional potential source of variability (true heterogeneity) may be present. This is an 
extreme case of precision in the context of reproducibility in that something changed, and 
is extreme in that one of the things that changed is the sample itself. 

In this case, two potential sources of variability are being lumped, lack of prefect 
measurement precision, and also potential true sample heterogeneity. Another way to say 
this is that precision+ (simply called field duplicates by some agencies) includes 
contributors to variability from lack of perfect analytical precision as well as potentially 
true variability in two potentially different samples.  

Using precision+ as the only QC control for precision is an acceptable approach, 
which combines two steps (measuring instrument precision plus one rough check on 
representativeness) into one, but planners should keep in mind that it may eventually 
trigger additional work compared to the more conventional one-step estimates of 
measurement precision as repeatability.  

We are not suggesting that two different kinds of precision samples should be 
taken. However, if precision+ is the only kind done, and precision measurement quality 
objective goals start to be missed, it should trigger another step. This additional step 
would be to perform some repeatability precision checks (where only one sample is 

http://www.waterboards.ca.gov/swamp/qamp.html#appendixc
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measured and nothing in the measurement process changes) at the same time one 
performs precision+ checks, to see which source is variability is most important. If it 
turns out to be a problem with instrument precision in the context of repeatability, 
additional calibration may have to be done. If it turns out that the different nearby 
samples are the main source of extra variability, monitoring teams may have to rethink 
the overall study design and representativeness aspects (and possibly then include more 
randomized samples in time and space to cover a more complete range of conditions in 
order to better assure representativeness of the target population 

To avoid having to do two types of precision, just doing precision in the context 
of repeatability is one acceptable approach, though it may result in not finding out more 
abut true heterogeneity of different nearby samples. If one does precision as repeatability 
only, one is depending even more heavily on survey design controls such as random 
sampling to obtain representativeness. 

Another way to look at this is that repeatability precision of the measuring 
instrument (lab or field) combined with the person using it (the two together might be 
considered the repeatability precision of the measuring system) is often determined by 
measuring a duplicate on a sample split from one original (single) sample. It might also 
be a single water sample, well mixed, where one simply inserts the probe twice in fairly 
quick succession to see the reading is the very close to being the same, or at least within 
MQO specifications. They key is that in the case of QC precision, the goal is trying to 
measure the exact same thing repeatedly.  

 Precision+, for contrast, involves measuring samples that are not necessarily 
exactly the same, introducing the possibility of additional sources of (true) variability. 
For emphasis, these additional sources of variability can be related to the separation of 
the samples in time and/or space, even if the separation does not seem great in the minds 
of the sampler. Again, if there is some unacceptable difference between two precision+ 
QC samples, one typically needs to take further steps to determine the source of the 
difference. For example, temperature can change fairly significantly in stream cross 
sections and/or according to depth (easily a couple of degrees sometimes), and the change 
can thus be related to the fact that the variable is really different rather than a reflection of 
lack of good precision of the measuring instrument. Checking for such differences is the 
reason USGS suggests preliminary checks first be done to see if centroid stream 
measurements differ by more than 5% from the composite cross section results (USGS 
Field Manual, Wilde and Radtke chapter 6). Such a check amounts to a check on the 
representativeness of a single measuring point compared to cross section results, but 
gives no information about representativeness compared to a larger potential target 
population in space (say farther up or down the river). 

Sample Sizes Needed for Precision Estimates: 
 
 For typical short term control of precision or precision+, sample size is usually 
two (duplicates, report as RPD) or occasionally three (triplicates, for sample sizes of 3 to 
6, report precision results as RSD). Usually the only time that one might want higher 
sample sizes over time might be to answer the following type of question “Considering 
QC results from a the last X number of years, what percentage of QC samples exceeded 
QC measurement quality objectives?” With the exception of USGS WRD, that question 

http://water.usgs.gov/owq/FieldManual/Chapter6/final508Chapter6.0.pdf
http://water.usgs.gov/owq/FieldManual/Chapter6/final508Chapter6.0.pdf


 147

has usually considered less important than the short term data acceptance or rejection 
question: Should we reject the data, recalibrate, and try again because Precision as a RPD 
or RSD did not meet the precision MQO? 
 Sample size seven QC precision samples from a short time period could be used 
to calculate AMS, but if sample size were seven, the result would be reported as 
measurement sensitivity or expanded uncertainty rather than as precision. The reason that 
sample size seven is used for sensitivity estimates is that seven is what has historically 
been used to estimate low level sensitivity as MDL detection limits. 

Can QC precision replicates be used to increase sample size (other than for QC 
issues) for statistical power analyses relevant to the target population? The answer is no, 
they are used for control and documentation of measurement precision only. 

None of the common questions that QC duplicates, QC triplicates, or larger 
numbers or QC replicates usually help answer relate specifically to the larger target 
population in the environment being measured. So QC replicates are not used to increase 
sample size beyond one (for statistical power purposes) in trying to answer common 
questions about environmental target populations. 

One simple explanation for why one should not use QC duplicates, triplicates, or 
other QC replicates for status or trend power or other statistical analyses is that they are 
not independent samples in time and space and would thus ‘artificially’ inflate sample 
size without commensurate addition of information content on true variability (Dave 
Thoma, NPS, Personal Communication, 2007). 

Split Sample Options to Estimate Precision 
 
Some agencies have their own individual terminology for precision samples. 

USGS distinguishes between “"pre-processing split samples" versus “post-processing 
split samples.” In their Field Manual, USGS also makes the key point that (whether 
sample size is 2, 3, or more, “replicates are considered identical in composition” (USGS 
Field Manual Chapter 4). Well mixed splits would generally be considered one sample, 
so either way, the result should be reported as precision in the context of repeatability 
rather than reproducibility, and sample size relative to target population is one (see 
discussion in section just above). 

Precision Compared To Sensitivity and Detection Limits 
 
As mentioned in the AMS description, sensitivity as AMS and AMS+ are similar 

concepts to precision and precision+, but AMS and AMS+ are based on 99% confidence 
levels, are much less frequently estimated, and are based on a higher sample size (7 
measurements). More frequently measured precision QC samples are estimated less 
often, are not based on 99% confidence, and are based on a lower sample size (usually 
two but sometimes three). The reason that precision QC samples are done so much more 
often is to document that the measurement process is remaining “in control.”  For 
contrast, sensitivity is as AMS or MDLs is usually calculated much less often, sometimes 
as infrequently as once per year. 

Results are expressed differently too. Precision estimates are usually expressed as 
RPDs for QC samples with a sample size two or as a relative standard deviation (RSD) 

http://physics.nist.gov/Document/tn1297.pdf
http://water.usgs.gov/owq/FieldManual/chapter4/pdf/Chap4_v2.pdf
http://water.usgs.gov/owq/FieldManual/chapter4/pdf/Chap4_v2.pdf
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for a precision QC sample size of three to six. AMS estimates (like MDLs or MLs) are 
given in original units of measure rather than as RPDs or RSDs. 

MDL low-level detection limits are special-case estimates of low-level sensitivity, 
and unlike precision (but like AMS) are based on sample size of seven.  

A helpful way to understand the relationship between precision and sensitivity is 
to think of sensitivity is a higher sample size (7) look at precision in certain stated 
conditions (sample size 7 and certain types of samples). MDL estimates are based on 
blank or very low-signal strength samples instead of normal-signal-strength samples used 
to estimate AMS or precision. 

AMS or MDLs control measurement sensitivity less often, whereas precision or 
precision+ control measurement precision more often to make sure the measuring 
process remains ‘in control”.  

 
X. Measurement Systematic Error/Bias/Percent Recovery  

 
In U.S. water quality and contaminants work, this Quality Control topic has too 

often been (wrongly) been called “accuracy” by some. Though it has commonly been 
used in this way in the past, the word accuracy should not be used for the concept of bias. 
As is understood by NIST and ISO and most of the rest of the scientific and engineering 
world, uncertainty in overall accuracy can only be estimated after factoring in not only 
systematic error/bias, but also (lack of perfect) precision.  

The kind of QC scale systematic error/bias being discussed here is the 
systematic or persistent distortion that would cause each individual measurement to have 
systematic error in only one direction (usually high or low). On this QC measurement 
scale of concern, systematic error and bias are usually considered synonyms.  

Bias generated from multiple measurements from different samples, the type of 
bias that would bias a summary statistic such as a mean, say through a faulty study design 
that does not sure a representative sample from the full range of conditions, is a different 
topic, related but on a different scale or organization.  
 In 2006, the Environmental Data Standards Council (EDSC, an interagency group 
including EPA, States and Tribes) in its new Quality Assurance And Quality Control 
Data Standard guidance; standardized the basic calculation and terminology definitions 
for bias, stating that percent differences (PDs, rather than % recovery) should be used. 
This recent guidance uses the correct (NIST/ISO compliant) terminology (bias rather than 
accuracy), but the discussion is short and does not optimally differentiate between the 
different kinds of bias usually controlled (reference materials, spike expectations, or 
blank control expectations). The equation the EDSC give for Percent Different 
calculations is PD = [Y - X) / X] * 100, where X is the known (usually “correct” or 
“expected”) or spiked amount, and Y is the measured concentration. 

For contrast, in past water quality and contaminants work, systematic error/bias 
has usually been expressed as a as % recovery (with the correct or expected answer being 
considered 100%) based on an interval (such as 80-120%). The new EDSC Quality 
Assurance And Quality Control Data Standard guidance specifies that the result should 
instead be expressed as a % difference compared to the correct or expected answer (say a 
+ 20%). The raw values used to calculate these percentages should also be reported as 
QC results (there is a place for them in STORET and NPSTORET. This is optimal as it 
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allows one to later look at the results in other ways (such as long term or multi-lab means 
or standard deviations).  

For parameters measured in the field (pH, oxygen, temperature, conductivity, 
etc.), and for many lab parameters (an exception would be tissue or sediment analyses), a 
maximum bias (% difference) MQO of a + 10% is typical (for example see Table A7-1 of 
EPA 2001. National Coastal Assessment QAPP). 

For quantitative flow measurements, the QA/QC SOP should state how often bias 
will be estimated, and what maximum % difference will be used as a MQO (such as + 
10%, or alternative %?). USGS guidance suggests that bias checks should be performed 
at least annually or when personnel change and states that QA/QC plans should 
“Describe what steps are taken to minimize systematic errors. For example, state if field 
trips are rotated to different personnel every three years or so, or if annually each field 
trip is performed by someone other than the one who usually performs the trip” (USGS 
1995, A Workbook for Preparing Surface Water Quality-Assurance Plans for Districts of 
the U.S. Geological Survey, Water Resources Division, Open File Report 94-382). When 
staff doing the monitoring or meters used change, see the Include a Cumulative Bias SOP 
section below. 

For each measurement done in the field or lab, are the following adequately 
covered? 

 
• A systematic error/bias measurement quality objective (MQO), such as actual 

performance should be not worse than a plus or minus 20% percent difference 
compared to the correct or expected answer.  

• Will the MQO be used as a data acceptance performance standard? 
• What is the data comparability source of the MQO (state, USGS, EPA-EMAP, 

RCRA, CERCLA, CWA, etc.)? 
• How will systematic error/bias be calculated and reported? 
• How often will systematic error/bias be estimated and reported? 
 

Unless otherwise justified, MQOs should be used as data rejection criteria. For 
example, suppose the MQO for bias for a particular parameter is that a % difference 
cannot be worse than a plus or minus 30% of expected. In that case, if actual recovery 
performance is worse (say plus or minus 40% of expected), all values associated with that 
batch (usually all data points collected since the last QC samples were performed to 
check for bias) should be discarded rather than reported into a database as valid results. In 
such scenarios, recalibration or other adjustments in the measurement process are usually 
made until the measurement process improves and begins performing within the M 
QO specifications. 

If one value (say water color by remote sensing) is being measured to estimate 
another value (say chlorophyll a, algae blooms, organic compounds like tannins, or 
mining wastes), how will bias and accuracy (including a precision component) and 
sensitivity be controlled and estimated? Will average observed to expected ratios be 
used?  If so, how will they be used? Will root mean square error techniques be used? 
How? How will the sensitivity result compare to standard detection limits that use 
multiples of the standard deviation? If the ground truthing measures include numerous 
different methods that produce different answers (for example, the numerous different lab 

http://www.epa.gov/emap/nca/html/docs/c2k_qapp.pdf
http://water.usgs.gov/osw/pubs/swqaplan.pdf
http://water.usgs.gov/osw/pubs/swqaplan.pdf
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methods for chlorophyll a, many of which tend to produce different answers), it 
complicates deciding what the “right” answer is to compare with remote. In other words, 
one needs reliable ancillary data to calibrate and validate remote estimates. 

Older biological inventory and monitoring data tend to have a total lack of any 
kind of information on the magnitude of measurement systematic error (bias) or precision 
at the QC level. In other words, there was not much real attempt to decide what a right 
answer would look like to be able to estimate bias, or to count or measure something 
twice to estimate precision. So whereas most past chemical data at least usually has some 
QC data on % recoveries and for duplicates, no such data exists for much biomonitoring 
data of the past. Much older biological monitoring data is also largely or totally missing 
control of QC precision relevant to each data point or minimum detectable differences 
relevant to multiple data points. This is slowly changing, and one can usually find a 
common-sense way to control and document measurement bias and measurement 
precision at the QC level in biological projects, although those working with benthic 
macroinvertebrates seemed to have progressed farther in this regard than those working 
with fish.  . 

One strategy for controlling bias at the QC level is to consider a senior expert’s 
answer right or expected (100%) and a rookie trainee’s answer as wrong. This could be 
done once every 20 samples or even less frequently, but “something” should be done to 
control bias. As discussed in more detail in Part B (the longer version), in cases where 
one is not sure even an expert is “right”, another approach would be to take the maximum 
difference (delta) between observations as an (maximum, precautionary) estimate for 
systematic error (bias). This would essentially produce the same comparison couplet as 
one would get for a precision QC estimate, but bias is usually expressed as a percent 
difference rather than a relative percent difference (RPD). If one were to express both as 
an RPD, it would be a bit like doubling the precision estimate, but somehow one has to 
account for both precision and bias to get at overall accuracy.  

In forestry, different terms are used, but bias is controlled. Sometimes, the mean 
observation minus the known true value is used to estimate bias. Bias in regression 
analyses can be especially problematic, and rumors indicate outliers are often just (sic, 
sometimes wrongly) discarded (Chapter 5, Measures and Estimates in Sit, V. and B. 
Taylor (editors) 1998 Statistical Methods for Adaptive Management Studies, B.C. Min. 
For., Res. Br., Victoria, BC, Land Manage. Handbook No. 42.). 

Include Calibration Details 
 
In general terms, correct calibration and recalibrating when necessary are 

important to maintaining data quality in general. EPA considers some calibration issues 
QA and others QC (for details, see EPA. 2002, Guidance for Quality Assurance Project Plans 
(QA/G-5, EPA/240/R-02/009 December 2002). 

Calibration is discussed herein as part of the measurement bias QC section, since 
maintaining calibration is so important to preventing biased results.  

If a field instrument is calibrated in the lab before going to the field, whenever 
possible, at least one quick final calibration check against a known-value standard (in the 
range of the values to be measured) should also be performed in the field before 
measurements begin. This is ideal because an instrument can go out of calibration in 

http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://www.for.gov.bc.ca/hfd/pubs/docs/lmh/lmh42.pdf%20or%20http:/science.nature.nps.gov/im/monitor/docs/BC_LMH42.pdf
http://www.epa.gov/quality/qs-docs/g5-final.pdf
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transit, after bumping around and undergoing temperature changes and other stresses on 
the way to the site, whether the transport is via a truck, backpack, or boat.  

For NPS VS monitoring protocols, instrument calibration details should be 
included either in the QA/QC SOP or in a separate calibration SOP. The need for 
calibration details is spelled out the in the VS generic checklist (“Checklist for Review of 
Vital Signs Monitoring Plans.”).  

If these details are somewhere besides a QA/QC SOP or a separate calibration 
SOP (perhaps in the field or lab method SOPs), there should be a “point to” in the 
QA/QC SOP so that the reader will be able to find them. Often an “additional” calibration 
step should be made in the field to make sure instruments have not fallen out of 
calibration during transport. Field calibration guidance and other general calibration 
guidance can be found in Part C of this guidance. 

Blank Control Bias (usually applicable to chemical lab work 
only) 
 

A blank is typically a sample that is intended to be free of the analytes of interest. 
Therefore the concentration therein should be less than the MDL (detection limit documented to 
be greater than zero). Blank QC samples are tested in the lab to see if they have been 
contaminated with the analyte during collection, handling, and processing steps. 
Contamination can result in a positive bias in the reported concentration.  

Again for emphasis, blank results are of concern as possibly causing positive bias 
if the difference between the value obtained by the measurement of the blank sample and 
the expected value (typically no greater than the MDL) is more than zero. If the result of 
the measurement of a blank is less than a MDL, then no contamination of the blank is 
suspected, since we are only confident that a recorded value is less than zero when it 
exceeds a MDL. 

The above is usually consistent with most other federal and state agencies. For 
example for CERCLA work EPA specifies that “For all blanks, enter the concentration if 
the absolute value of the concentration is greater than or equal to the appropriate MDL” 
(EPA. 2004. Contract Lab Statement of Work for Inorganic Analyses). However, blank 
control requirements can vary somewhat between various federal and state agencies, so 
check to see what comparable data sets use. 

Unless otherwise justified, for lab chemical measurements of toxic chemicals, 
metals, pesticides, or nutrients, MQOs for blank control shall be listed in the QA/QC 
SOP. QC requirements and frequency of testing blanks shall be no less stringent than 
State requirements. Depending on whose data will be used for comparison, NPS 
monitoring may also want to be sure than blank control be no less stringent than that of 
another federal program whose data will be used for comparison. In other words, we 
would usually want to standardize not only MQOs but also the frequency of testing blank 
QC samples, and the type of blank (field, lab rinsate, etc.) with the other agency having 
considerable data. 

Unless other wise justified, if only one type of blank control sample is to be used, 
it should go through all field and lab processing steps. If contamination of the blank is 
found, more work can then be done to find out where the contamination may have been 
introduced in various field and lab processing steps. Terminology varies, but the concept 

http://science.nature.nps.gov/im/monitor/docs/MonitoringPlanChecklist.doc
http://science.nature.nps.gov/im/monitor/docs/MonitoringPlanChecklist.doc
http://www.nature.nps.gov/water/Vital_Signs_Guidance/Guidance_Documents/wqPartC.pdf
http://www.epa.gov/superfund/programs/clp/download/ilm/ilm53a-c.pdf
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is that if only one blank is used (USGS requires more) it should at least go through all 
field and lab processing steps 

For each chemical measurement done in the lab, are the following adequately 
covered? 
 

1. A blank control measurement quality objective (MQO), if applicable. 
2. What types of blanks will be controlled (trip blanks, lab blanks, etc.) 
3. Will the MQO be used as a data acceptance performance standard? 
4. Will data reported be adjusted by adding concentrations found in blanks? If not, 

how will blank control be accomplished (reduce contamination and re-run the 
samples?). 

5. What is the data comparability source of the MQO (state, USGS, EPA-EMAP, 
RCRA, CERCLA, CWA, etc.)? 

6. How will blank control be calculated and reported? 
7. How often will blank control be estimated and reported? 

 
Biological inventory and monitoring projects have not historically done blank 

control. However, if the scenario of wrongly assigning a number value when the true 
value is zero seems likely, it might be possible to develop a common-sense way to 
control bias from blanks. 
 

NON-QC SOPS RELATED TO QA/QC 
 

XI. Include a Data Analysis SOP 
 

What are there recommendations for routine data summaries and statistical 
analysis to detect change?  One needs to decide what statistical analyses will be used to 
analyze the date before designing monitoring details, to be sure that sample sizes and 
other details are adequate for the analyses being planned. 
How often will reporting and trend analyses be done? Does this SOP or the protocol 
narrative describe the frequency of testing and review of protocol effectiveness? 

Statistics that are normally used were first discussed herein above in the sections 
on initial statistics to be used and the size of differences (MDDs) that one needs to be 
able to detect, statistical power, sample size calculations for mean differences, and 
sample sizes needed for proportions. 

The data analysis SOP should include a discussion of the data analyses. This 
should include: 1) statistics to be used, 2) who will do the analyses, 3) how often the 
analyses will be done, and 4) what is planned to ensure that adequate staff time and 
project funding is set aside for this very important task. Most of the proposed statistics 
should be worked out with a statistician before protocols & SOPs are completed. 

Confidence Intervals about a Single Mean 
  
Confidence intervals are good statistics to report, but be sure to specify what exact 

kind of confidence interval will be reported. The ubiquitous t-distribution confidence 
interval about a single mean is often an easy first step and is available as part of the 
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standard MS Excel data analysis toolpak. Once toolpak is installed, choose add-ins from 
the tools menu if not already installed) summary statistics (choose tools, then data 
analysis, then descriptive statistics, than check summary statistics and then check 
confidence interval of the mean. The result given is actually the half-width of the t-
distribution parametric confidence interval (the half width is the part of the interval on 
either side of the mean). However, there is no similar very easy calculation of the 
confidence intervals of the difference between two means (topic of next section) in MS 
Excel, and one has to enter the formula manually. 

However, in an example of why one has to be careful to get things exactly right 
when using software, if one uses the “confidence” function in Excel, one instead gets an 
answer for the half-width of a two sided Z-distribution about the mean, and the Z-
distribution is the wrong one to use for a small sample size (use the t-distribution for 
sample sizes less than 30). So make sure you understand and then specify what kind of 
confidence interval is being reported by the software used. The most common convention 
for two-sided confidence intervals about a mean is usually to report the mean plus or 
minus the confidence interval magnitude on either side of the mean (the half width on 
each side of the total interval).To avoid any possible confusion, make it clear which kind 
of interval is being discussed, especially whenever the confidence interval being reported 
is really the full interval width rather than the (more common) half-interval width on 
either side the summary statistic.  

Confidence Intervals about the Difference between Two Means 
 
This is a different topic. Confidence intervals around the difference between two 

means are discussed in Zar (1999), McBride (2005, Statistics text book) and Helsel, D.R. 
and R.M. Hirsch. 2002. Statistical Methods in Water Resources). 

A few basics on this “different” kind of a confidence interval (between two 
means) are presented for comparison: 

 
After properly calculating a 95% confidence interval around the difference 
between two means, one can see whether that confidence interval includes 0. 
Doing so is exactly equivalent to conducting a t test with alpha = 0.05.  If the 
calculated confidence interval includes 0, then one concludes there is no 
significant difference.  If the confidence interval does not include 0 then one 
concludes there is a significant difference. These conclusions will be exactly the 
same as those from a t test using the same dataset. That's because both procedures 
(the t test and the confidence interval for the difference between two means) make 
use of the same statistic, the standard error of the difference between the two 
means.  
 
There are directions and discussion on calculating a confidence interval for a 
difference between two population means given on pages 366-367 of Elzinga 
(Elzinga et al. 1998. Measuring and Monitoring Plant Populations).  

Upper Confidence Interval Limit on a Single Mean 
 

http://office.microsoft.com/en-us/excel/HP011277241033.aspx
http://www.gslis.utexas.edu/%7Ewyllys/IRLISMaterials/excelnotes.html
http://www.gslis.utexas.edu/%7Ewyllys/IRLISMaterials/excelnotes.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471470163.html
http://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3.pdf
http://www.blm.gov/nstc/library/pdf/MeasAndMon.pdf
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One can get an upper confidence limit on a mean from a two-sided confidence 
interval, but if the only question one needs to answer is only one-sided (for example, does 
the mean exceed a water quality standard), a one-sided confidence interval is more 
appropriate. 

The classical (parametric, t-distribution) computation of the 95% upper 
confidence limits (UCL95) is a t-interval, xbar + t(0.95, n-1) * s/sqrt(n), where xbar is the 
sample mean, s is the sample standard deviation, t(0.95, n-1) is the one-sided critical t-
value when alpha is 0.05, n-1 is sample size minus 1 (DF), and n is the number of 
observations.  However, this formula assumes either that the data follow a normal 
distribution, or that we have a lot of data. The minimum sample size needed to use this 
formula with non-normal data increases as the skewness of the data increases 
(Oct06_UCL.pdf). 

If park waters are influenced by federal RCRA or CERCLA sites, monitoring 
planners might want to become more conversant with EPA’s default statistical guidance 
(including information on UCLs): 

 
Box 5-1 in EPA 2000. Data Quality Assessment guidance for the statistical evaluation 
of investigative data. Practical Methods for Data Analysis, EPA QA/G-9  
 

A statistical program in use in EPA to judge compliance with water quality 
standards or other benchmarks such as those in use at RCRA or CERCLA sites is Pro 
UCL, an Excel based add-in macro available on the internet (Statistical Software ProUCL 
4.0 for Environmental Applications for Data Sets with and without Nondetect 
Observations). It provides options for calculating upper confidence limits (UCLs) in 
many different ways. One strategy is to try several and pick the result with the longest 
confidence interval to be precautionary since not all work well at smaller sample sizes:  
 

1. the central limit theorem (CLT) based UCL, 
2. modified-t statistic (adjusted for skewness) bases UCL, 
3. adjusted-CLT (adjusted for skewness) based UCL, 
4. Chebyshev inequality based UCL (using sample mean and sample standard 

deviation), 
5. Jackknife method based UCL, 
6. UCL based upon standard bootstrap, 
7. UCL based upon percentile bootstrap, 
8. UCL based upon bias - corrected accelerated (BCA) bootstrap, 
9. UCL based upon bootstrap-t, and 
10. UCL based upon Hall’s bootstrap.  
 
Many in RCRA and CERCLA use this software to deal with site data that will be 
used to develop statistical Exposure Point Concentrations (EPCs) for a risk 
assessment performed using EPA's RAGS [Risk Assessment Guidance for Superfund 
(RAGS) Part A]  Risk Assessment Guidance for Superfund).  
 

UCLs can also be calculated with various statistical software programs including “R” and 
even MS Excel, but not all such options are user friendly. 

http://www.practicalstats.com/news/newsnada/files/Oct06_UCL.pdf
http://www.epa.gov/quality/qs-docs/g9-final.pdf
http://www.epa.gov/quality/qs-docs/g9-final.pdf
http://www.epa.gov/nerlesd1/tsc/software.htm
http://www.epa.gov/nerlesd1/tsc/software.htm
http://www.epa.gov/nerlesd1/tsc/software.htm
http://www.epa.gov/oswer/riskassessment/ragsa/index.htm
http://www.epa.gov/oswer/riskassessment/ragsa/index.htm
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How should nondetects be used in the estimation of one-sided upper confidence 
intervals (UCLs)? As summarized in the Practical Stats Newsletter (Oct06_UCL.pdf), 
Singh et al. found that “the nonparametric Kaplan-Meier (KM) methods consistently 
produced the best estimates of the UCL95. Maximum likelihood methods did not provide 
good coverage for smaller sample sizes or for highly skewed data (so KM would be 
better than the lognormal MLE recommendation of Frome and Wambach, based on their 
findings).  Probability plot (robust ROS) methods did not work as well as KM - though 
still much better than substitution. The authors tested several ways to compute the 
confidence bound around the K-M estimate of mean, and found four to work well:  
percentile bootstrap, bias-corrected percentile bootstrap, the t formula (using KM 
estimates of mean and standard deviation), and the Chebyshev formula. The best 
performance among these four changed with data characteristics -- read their report to 
fine-tune when to use each of them” (Singh et al 2006. On the Computation of a 95% 
Upper Confidence Limit of the 
Unknown Population Mean Based Upon Data Sets with Below Detection Limit 
Observations, EPA/600/R-06/022).  

Also as summarized in the Practical Stats Newsletter (Oct06_UCL.pdf), one can 
compute the UCL95 for nondetect data using the percentile bootstrap Kaplan-Meier 
(KM) method with the KMBMean macro. Nondetect-friendly Download software is 
available for SAS, Minitab, and “R” software. NPSTORET transforms nondetects with 
KM and then calculates certain summary statistics, but confidence intervals are not 
currently among the statistics that can be calculated with censored data in NPSTORET. 
 To conservatively estimate optimal sample sizes needed for calculation of an 
upper confidence limit, see section on sample sizes needed to estimate the difference 
between a mean and a water quality standard. 

Confidence Intervals around Differences between Medians 
 
These confidence intervals are calculated in a different way. Nonparametric 

confidence intervals about the difference between two medians are discussed in section 
5.4.2 in Helsel and Hirsch (Helsel, D.R. and R.M. Hirsch. 2002. Statistical Methods in 
Water Resources. US Geological Survey Techniques of Water Resources Investigations). 

Bacteria and pH Statistics, a Special Cases 
   

 Analyzing pH and bacteria data: Be aware that these are reported on a log scale 
already (actually the negative log for pH). Also keep in mind that the means of the logs 
will be a bit different than the means for other parameters, since means of logs are 
essentially geometric means not normal arithmetic means. Also keep in the mind that 
variability (as expressed by a standard deviation) will usually appear to be lower simply 
because one is already on the (less variable) log scale. So don’t conclude that variability 
of pH is much lower than other parameters, when the only reason is that pH is on the log 
scale and the other measures are not. Also be aware of back transformation bias issues. 
On the other hand, t tests can normally be used with pH and other log transformed data, 
as the data is already transposed into a more normal distribution type scale. For more 
details, see the longer version of Part B and the following internet references: 

http://www.practicalstats.com/news/newsnada/files/Oct06_UCL.pdf
http://www.epa.gov/esd/tsc/images/EPA%20600%20R-06%20022.pdf
http://www.epa.gov/esd/tsc/images/EPA%20600%20R-06%20022.pdf
http://www.epa.gov/esd/tsc/images/EPA%20600%20R-06%20022.pdf
http://www.epa.gov/esd/tsc/images/EPA%20600%20R-06%20022.pdf
http://www.practicalstats.com/news/newsnada/files/Oct06_UCL.pdf
http://www.practicalstats.com/downloads/index.html
http://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3.pdf
http://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3.pdf
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
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1. USGS 2006. National Field Manual section on pH monitoring in general. 
2. M.D. Mattson. 1995. Comments on Calculating pH Statistics. EPA. The 

Volunteer Monitor, Vol. 7, No. 2, Fall 1995. 

Short or Long Term Trend Analyses? 
 

Interpretation of significance levels of trends can be complicated, and many 
recent environmental trend analyses have failed to properly account for very long term 
persistence of trends. For example, is what we are seeing in a given data set possibly a 
short term up-trend within a longer term down-trend (Cohn, T. A., and H. F. Lins. 2005. 
Nature's style: Naturally trendy, Geophys. Res. Lett., 32, L23402)? Nevertheless, it is still 
valuable to document trends, and it is also useful to think about how trends will be 
analyzed statistically before monitoring begins. The next few sections discuss important 
considerations when analyzing water quality or other aquatic data for long-term trends: 

Consider Diel Differences in Trend Analyses 
 

This topic was first introduced in the section on representativeness. For trend 
detection for many parameters subject to large diel swings, one potential strategy is to 
stratify by time of day (hours after sunrise or before sunset) to try to take out most of the 
diel variability. The reason for trying to reduce variability is to enable detecting of trends 
of a magnitude of concern within a reasonable period of time. Most (shallow, sun driven) 
water-column parameters show diel variability in certain types of locations, especially 
pH, oxygen, temperature, chlorophyll, many dissolved metals, and nitrates. One sampling 
strategy that could be stated in protocol narratives is that sampling will be done on a diel 
basis at first and then later done in restricted periods of time to either get variability down 
or to capture worst-case time periods. Networks could also try weighting data by time of 
day, similar to what is done for flow weighting (see next section). 
 

Stratify or Weight by Flow or Water Level Before Trend 
Analyses? 

 
Considering flow can often help explain why patterns of changes in magnitude 

and/or changes in variability are happening. The concentrations and loads of many water 
column parameters (including Total Phosphorus and other parameters that tend to bind to 
suspended particles) are driven strongly by flow conditions. Although the concentration 
of extremely water soluble constituents can be a bit less influenced by flow than is the 
case for some other constituents, it is hard to find water column constituents never 
influenced by flow rates, especially high flows or first flush (rising limb after a dry 
period) flows. Therefore, one often has to factor in flow into trend or data interpretation 
analyses. This is often done in USGS by weighting data for flow. For example, in a 
recent NAWQA summary, the flow-weighted mean concentration in milligrams per liter 
(mg/L) was calculated by dividing the total load over the estimation time period by the 

http://water.usgs.gov/owq/FieldManual/Chapter6/6.4_ver1.3.pdf
http://www.epa.gov/owow/monitoring/volunteer/newsletter/volmon07no2.pdf#search=%22%22Comments%20on%20Calculating%20pH%20Statistics%22%22
http://water.usgs.gov/osw/pubs/Naturally_Trendy-Cohn-Lins_GRL_2005.pdf
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total stream-flow (USGS NAWQA 2006. Nutrients in Streams and Rivers, 1992-2001, 
Scientific Investigations Report 2006–5107).  

The other common way to try to reduce excess variability in concentrations driven 
by flow is to stratify sampling to include only certain flow conditions (such as only low 
flow, late summer index periods) to minimize excess variability caused by flow changes 
rather than a true trend over longer periods of time. 

The water level of lakes, ponds, and wetlands can also influence concentrations of 
water column constituents (evaporation can concentrate pollutants or ions). 

One reason we strongly suggest that at least STORET qualitative flow conditions 
(dry, no flow, low, normal, above normal, and flood) be recorded in all aquatic Vital 
Signs monitoring, even if no attempts are made to obtain quantitative flow, is that such 
classifications are better then nothing and may help in subsequent data interpretation and 
statistical analyses (for example chemical results associated with low and/or normal 
might be compared with results classified as above normal and flood flows).  

If the result is dry or no flow, quantitative flow measurements are of course not 
possible, but recording the conditions may still prove helpful to future data users. On the 
other hand, qualitatively distinguishing between normal, above normal, and flood 
conditions can be problematic (associated with poor precision reproducibility or 
repeatability).  

Quantitative flow estimates would therefore be superior, even if only the less 
precise float methods are used. However, no matter how the quantitative or qualitative 
flow estimates or categories are obtained, the data should be accompanied by QC 
precision and bias measurement performance results, so that the quality of the data and 
precision of the categorical groupings can be assessed.  

Even quantitative data is also sometimes eventually split into categories before 
data interpretation or analyses steps. For example, a USGS nationwide approach to show 
hydrologic variation, involves ranking all annual stream-flow data and dividing in into 
four “quartiles.” The highest 25 percent of the flow years are classified as “high flow” 
years, while the lowest 25 percent are considered “low flow” years. The middle range is 
classified as “normal” and more accurately represents the range of normal conditions than 
a single figure (K. Blankenship. 2001. USGS refines long-term flow estimates for 
Chesapeake). 

Consider Phenology Factors in Trend Analyses 
 
Both biological and physical phenology aquatic indicators, many of which are 

related to flow, water level, or potential climate change issues; are gaining more interest 
for future status and trends monitoring. Such indicators could include indicators like the 
number of ice free days, first date of either ice-free or ice breakup, number of days of 
flow per year, date or season of first onset and first stoppage of flow, number of days per 
year a wetland or seep is wetted, dates of onset or length of periods of fish migration or 
spawning periods, length of algal bloom or algal growing periods (a bit like growing 
season in terrestrial habitats), date of mayfly hatch (usually temperature related), date of 
onset of spring high flows, date of end of spring high flows, etc. Many of these indicators 
may have value related to climate change factors that can drive ecological or biological 
results. 

http://pubs.usgs.gov/sir/2006/5107/pdf/SIR06-5107_508.pdf
http://pubs.usgs.gov/sir/2006/5107/pdf/SIR06-5107_508.pdf
http://www.nature.nps.gov/water/infoanddata/index.cfm
http://www.bayjournal.com/article.cfm?article=1976
http://www.bayjournal.com/article.cfm?article=1976
http://www.uwm.edu/Dept/Geography/npn/
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Once logical categories are defined, there are a large number of parametric and 
nonparametric statistical procedures available to analyze any resultant categorical data 
(from either qualitative or quantitative data) or continuous data (from quantitative flow, 
see Helsel, D.R. and R.M. Hirsch. 2002. Statistical Methods in Water Resources. US 
Geological Survey Techniques of Water Resources Investigations.  

 

Consider Seasonal Differences in Trend Analyses 
 
Unless one is sampling in a narrow index window of time (say once a year in late 

summer only, within a restricted range of water temperatures), to detect trends in a 
reasonable period of time, one has to do something to take out bias and variability 
changes that relate to seasonal differences.  

In USGS settings, short-term (including perhaps 50 years) trends are most 
commonly documented in water quality with seasonal Kendall nonparametric tests for 
trends after one has assured adequate sample sizes.  

For lake monitoring, some monitoring groups have tried to factor in seasonality 
by using parametric regression techniques distinct from simple linear regression in that 
the data is de-seasonalised (G. Barnes, 2002, Water Quality Trends in Selected Shallow 
Lakes in the Waikato Region, 1995. Environment Waikato Technical Report 2002/11). 
The same method is one of the methods used in Lakewatch programs in various parts of 
the US, including Florida (Univ. Florida 2003. Lakewatch). To be conservative, Florida 
Lakewatch volunteer monitoring looks at trends using multiple angles and tests (always a 
good idea) and only calls trends if multiple methods indicated a trend. Lakewatch 
software is available (no endorsement implied; we have not tried it). 
 The deseasonalised Lakewatch parametric tests are mostly based on the work of 
Noel Burns, who has clarified that he does not emphasize power but instead simply looks 
at large sample sizes (200) and controls alpha at 0.05. He also uses multiple lines of 
evidence (chlorophyll, Secchi Disk, TP, TN) to see if most point in the same direction 
(towards or away from eutrophication). Burns evaluates the coherence of the trends in the 
4 variables and translates this coherence, or lack of it, into the probability of change in a 
lake. Burns also emphasizes looking at the data from different angles (original data and 
various statistics or transformations) and particularly the seasonal pattern, which can be 
quite different for each variable and for different lakes. Once the coherence factor 
between the 4 variables has established whether a lake is changing, a regression 
relationship between the annual trophic level values for each of the 4 variables and year 
enables the rate of change in the lake to be determined by LakeWatch (Noel Burns, 
EarthSoft Consultant, Personal Communication, 2005). 

Although I have not seen direct comparisons done, I would expect the 
deseasonalised method above to produce reasonably similar results to the seasonal 
Kendall Test (Graham McBride, NIWA, New Zealand, Personal Communication, 2006).  

Too Many Choices for Trend Analyses? 
 
For beginners, a thoughtful plain language primer on trends in outdoor 

environments is C.A. Stow, et. al.1998.  (op. cit.). Among the thoughts therein: 

http://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3.pdf
http://www.ew.govt.nz/publications/technicalreports/documents/tr02-11.pdf
http://www.ew.govt.nz/publications/technicalreports/documents/tr02-11.pdf
http://lakewatch.ifas.ufl.edu/2003DataReport/FLWVol2_IntroIndex.pdf
http://www.lakewatch.net/
http://www.lakewatch.net/
http://www.esajournals.org/perlserv/?request=get-document&issn=1051-0761&volume=008&issue=02&page=0269
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1. The choice of trend detection software can be overwhelming because there are so 

many choices, but this choice is secondary to other factors, like getting enough 
samples over a long enough period of time and choosing variable with high signal 
to noise ratios (which usually means ones with less variability, since we cannot 
manipulate the signals in outdoor environments). 

2. Pseudoreplication is not always a fatal flaw in site-specific studies where the 
questions relate to the site itself rather than many similar sites or many similar 
stressors. It all depends of the questions. If the questions are not about the effects 
power plants in general, but about the effects over time of one specific power 
plant, then pseudoreplication is not such a key issue. 

3. Measurement uncertainty (Stow calls it measurement error) can greatly increase 
variability and therefore inhibit us from finding true trends of importance. 
Solution: pick variables where measurement error (lack of perfect precision, 
presence of bias etc.) do not greatly increase variability. 

4. Some past publications have argued that autocorrelation and deviations can be 
relatively minor issues for a realistic limnological time series. Again, evenly 
spaced samples with large sample sizes can overcome some complications. 

Pseudoreplication Issues  
 
A beginner’s plain-language explanation of pseudoreplication issues is on the 

internet [R.J. Irwin and L. Stevens. 1996. Pseudoreplication issues versus hypothesis 
testing and field study designs. Park Science 16(2): 28-31].  

These subjects are actually quite complex, and the above plain-language 
summaries by Stow and Irwin (just above) are not sufficient for those desiring an in-
depth understanding of pseudoreplication. Statisticians and other experts would argue for 
more details and a bit more careful wording due to more recent understandings and 
clarifications, many of which have been argued back and forth and refined in recent 
years. On the other hand, many of these details are not easily summarized. See Part B 
(heavy) for more detail and some recent publications on pseudoreplication. One example 
of more careful wording: 
 

If one is not trying to extend the domain of inference beyond a specific site that 
was sampled through time, then investigators should clearly state that the results 
and conclusions from their work apply ONLY to that single point, and may or 
(much more likely) may not reflect results from a more spatially extensive area. 
Spatial pseudoreplication typically becomes a more-likely problem when the 
procedure by which one decides which sites to sample from the domain of interest 
is not implemented in a probabilistic fashion (e.g., randomly, stratified randomly, 
systematically). Once one has settled spatial issues, one also has to pay attention 
to temporal issues to make sure that monitoring designs match the question(s) 
being addressed and the intended domain of interest (Erik Beever, Great Lakes 
Network, NPS, Personal Communication 2007). 

http://www2.nature.nps.gov/ParkScience/archive/PDF/ParkScience16(2)Spring1996.pdf
http://www2.nature.nps.gov/ParkScience/archive/PDF/ParkScience16(2)Spring1996.pdf
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
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Keep it Simple with Time Period Tests for Step Trends? 
 
Although some of the trends analyses discussed above are complicated, along the 

lines of Stow’s thoughts above, the choice of the method may be secondary to other 
factors. For example, keep in the mind that if there is evidence of a step trend, there is 
nothing wrong with using a properly framed hypothesis test (AS ONE PRELIMINARY 
LINE OF EVIDENCE) to contrast combined data from one time period to another time 
period. This could be comparing one year to the next. It could also be data from one 
combined 30-year period (say before a known or suspected step-change event) to the next 
30 year time period (say after the step change). Such a procedure might be logical before 
and after a major known change (for example, the cessation of a large industrial 
discharge into a small stream, or the time when a major pesticide stopped being used). 

Keep in the mind that if there is evidence of a step trend, there is nothing wrong 
with using a properly framed hypothesis test AS ONE PRELIMINARY LINE OF 
EVIDENCE to contrast combined data from one time period to data before the 
(sometimes noticeably abrupt) step change to another time period (after the step change). 

 
Always Try Simple Exploratory Data Analyses: 
 
When planning monitoring (or subsequently fine-tuning monitoring designs over 

the years in an adaptive manner), there is no substitute for understanding as much as 
possible about variation in time and space, and getting whatever hints one can by plotting 
the available data on the X axis against various time (multi-year, within-year, and diel, 
within 24 hours) and place scales on the Y axis. That is one reason plotting data should 
typically be part of exploratory data analysis (EDA), If one sees a strong hint of a step 
trend (a major jog in the plot line) at a single fixed long term monitoring site, then 
perhaps lumping time periods before and after the jog (step) and doing both the paired 
version of sample size estimators and the paired versions of hypothesis tests is 
appropriate. One might also look closer to see if there was logical event that 
corresponded to the timing of the jog in the line, such as some change in the 
measurement process (see Include a Cumulative Bias SOP section below) or a major 
reduction in point source pollution. 

Again, even those who plan to do complex time series (repetitive measure) 
analyses including trend tests often do common sense checks somewhat similar in theory 
to a t-test or paired t-test as a part of basic functional data analyses, especially as part of 
the data analyses step following a data summarization step  

Regressions in Trend Analyses:  
 
Although doing regressions is often a first impulse when looking at possible 

trends, regressions are not used to analyze water quality trends as often as other 
techniques (notably Seasonal Kendall Tests). This is partly due to the fact that often 
water quality trends are not linear, and partly since there are often alternatives for trend 
analyses that are more commonly used. In fact, although all three of the statistics texts 
listed below this section mention regressions, only the EPA document (the one aimed 
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least directly at water quality-specific issues) spends much time on regressions in a trend 
analysis section.  

However, since regressions are used partly to define relationships between 
variables, once seasonal, diel, and/or flow factors have been considered or weighted, 
there is nothing wrong with using regressions as one additional angle to look at trend 
issues.  

Those deciding to do regressions in testing scenarios in association with trend 
data (is the slope different from zero, etc.), perhaps as one additional line of evidence in 
addition to Seasonal Kendall tests when trends are strongly thought to be linear, should 
think about minimum sample sizes needed to cover the full range of conditions. In 
addition to the EPA sample size calculators for trends discussed, above, there are also 
various generic sample size calculators aimed at more complex regression topics, 
including hierarchical multiple regression analyses. These topics are too complex to 
discuss briefly herein, but try to only use sample size calculators that include inputs for 
beta and alpha rather than alpha alone.  

Missing Values, Useful Data, and Effective Data 
  

 The Data Analysis SOP should detail how imperfect data can be and still be used 
in data analysis or to meet completeness goals. Unless otherwise justified, data that have 
not met QC measurement quality objectives for precision, bias, and sensitivity are not 
considered useful and are not included in quantitative statistical analyses. The same is 
true for: 1) data below qualitative detection limits (MDLs), 2) data between MDLs and 
MLs (see detection limit discussion further below herein for exceptions, 3) data 
associated with holding times that have been exceeded or where preservation 
requirements have otherwise not been met, 3) chemical concentrations where improper 
containers were used, 4) data beyond minimum and maximum plausible values (checked 
via range sensibility checks). If some of these will be considered OK for qualitative data 
analysis, provide the rationale in the data analysis SOP. 
 How will missing values be handled? This topic is highly related to completeness 
goals, but decisions hinge not only on what % (like 15%) can be missing, but also on 
whether or not the missing data is from a critical class of data. For example, suppose the 
question is “What is the annual temperature?” If all 15% of the data missing are in the 
coldest part of the year, it would tend to bias the answer.  
 When using the seasonal Kendall test for trends, an allowance for missing data 
can be made. In fact, non-parametric tests are sometimes chosen because 1) they are not 
affected when the distribution of data is not normal, 2) are insensitive to outliers, and 3) 
are less impacted (or not impacted) by missing or censored data (Harcum, J.B., J.C. 
Loftis, and R.C. Ward. 1992. Selecting trend tests for water quality series with serial 
correlation and missing values. Water Resources Bulletin 28(3):469-478). The decision 
of what percent of the data can be missing and still pass completeness goals should 
include a common sense check relative the questions to be answered and the statistics to 
be used.  
 Include this topic in discussions with your applied statistician, since imputation 
options tend to be complex. See Part B for additional discussion. 

http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
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 Part B also contains generic definitions for useful data and effective data. 
Depending on the questions and project data quality objectives, data from screening 
methods can be “effective” even it was not collected by the most precise or accurate 
methodology (see detailed discussions of effective data in Part B.  

Although the data analysis SOP should cover the basics of what will be done with 
missing data, more detail, along with how values below detection limits (see discussion 
further below related to low level detection limits) will be handled, should be covered in 
the QA/QC SOP.  

Useful References for Statistical Analyses: 
 
The first three cover water quality and contaminants scenarios and also cover 

many trends-related issues, including Kendall and seasonal Kendall tests, Sen's Slope 
Estimator, other options for assessing trends, and autocorrelation: 

 
1) Graham McBride. 2005. Using Statistical Methods for Water Quality 

Management: Issues, Options and Solutions. Wiley, NY, 313 pp. 
 
2) Helsel, D.R. and R.M. Hirsch. 2002. Statistical Methods in Water Resources. 

US Geological Survey Techniques of Water Resources Investigations). 
 
3) EPA 2000. Data Quality Assessment guidance for the statistical evaluation of 

investigative data. Practical Methods for Data Analysis, EPA QA/G-9. This 
one is not focused on water quality or aquatic work but is a useful statistical 
text on the internet. 

 
4) D. Helsel. 2005. Nondetects and Data Analysis: Statistics for Censored 

Environmental Data. Wiley. 
 

5) EPA explains many probabilistic analysis issues at an EMAP monitoring and 
design and analysis home page. This is a good reference but probably cannot 
be used as a stand alone (don’t just say analyzed according to EMAP 
suggestions). 

 
6) A recent list of internet statistical calculators in general is in EPA. 2007. 

Analytical and Sampling Tools. Other EPA N-Step tools cover change-point 
analysis, correlation, and regression issues. 

 
7) Robert C. Ward, Jim C. Loftis, Graham B. McBride. 1990 Design of Water 

Quality Monitoring Systems, books.google.com. 
 

8) Adaptive Management Statistics (Sit, V. and B. Taylor (editors) 1998 
Statistical Methods for Adaptive Management Studies, B.C. Min. For., Res. 
Br., Victoria, BC, Land Manage. Handbook No. 42.). This entire text book is 
on he internet and includes an introduction to Bayesian methods and to 
studying uncontrolled—out in nature--events). 

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471470163.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471470163.html
http://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3.pdf
http://www.epa.gov/quality/qs-docs/g9-final.pdf
http://www.epa.gov/quality/qs-docs/g9-final.pdf
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471671738.html
http://www.epa.gov/nheerl/arm/designpages/design&analysis.htm
http://www.epa.gov/nheerl/arm/designpages/design&analysis.htm
http://n-steps.tetratech-ffx.com/statisticalTool-tools.cfm
http://n-steps.tetratech-ffx.com/statisticalTool-method.cfm
http://n-steps.tetratech-ffx.com/statisticalTool-method.cfm
http://books.google.com/books?hl=en&lr=&id=aasVCsXnFR0C&oi=fnd&pg=PR5&dq=Statistical+Methods+for+Environmental+Pollution+Monitoring,%22+(Gilbert,+1987&ots=CCaMHRkBxf&sig=5CSEZgE93XnKeFWiAFED8Hi7kFM#PPP1,M1
http://books.google.com/books?hl=en&lr=&id=aasVCsXnFR0C&oi=fnd&pg=PR5&dq=Statistical+Methods+for+Environmental+Pollution+Monitoring,%22+(Gilbert,+1987&ots=CCaMHRkBxf&sig=5CSEZgE93XnKeFWiAFED8Hi7kFM#PPP1,M1
http://www.for.gov.bc.ca/hfd/pubs/docs/lmh/lmh42.pdf%20or%20http:/science.nature.nps.gov/im/monitor/docs/BC_LMH42.pdf
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9) Various references and discussions available to NPS employees only at the 

NRPC water quality statistics Sharepoint site. 
 

XII. Include a Cumulative Measurement Bias SOP 
 
 Is our internal NPS data from both old and newer measuring systems comparable 
enough that the different sets of data could be combined for purposes of determining 
trends or making management or regulatory decisions? 
 “Do not be swayed by the argument that we cannot change now because ‘we have 
4 years of data that will be compromised.’ You are in this for the long haul. If you do not 
correct mistakes now, 25 years latter you will (should) be cursed” K. Burnham. 2004. 
Wildlife monitoring: success requires more than a good sampling design). 

The SOP should make it clear that data adjustments would be made for trend 
analysis only rather than before reporting data into long term data bases (the networks or 
STORET). More detail: It gets tough to estimate the effects of cumulative bias of say 
eight changes over say 100 years of monitoring, and for data reporting, we would not 
usually want all the data normalized to methods from 100 years ago, since the older 
methods may be more biased and/or less than precise than the newer methods, So the real 
utility of keeping track of cumulative bias changes, the focus of this section, is to try to 
make it easier for future data users to get all the data into comparable units for long term 
trend analysis. In the past it has been difficult for data users to determine if some of those 
jogs in the trend line might be explained by method changes instead of true changes in 
environmental variables.  
 A good example of a good cumulative bias SOP is the SOP 6 of the Northern 
Colorado Plateau Network Freshwater Protocol (intranet site available on NPS computers 
only). 

NIST suggests adjusting data to correct for bias, but chemists have ordinarily not 
done this because sample sizes of the bias comparisons have usually been too small to get 
a good estimate of the magnitude of the bias. Data for reporting into database such as 
STORET would not be adjusted, and even data used in trends reporting would not be 
adjusted unless: 

 
1. There is a strong indication of which set of measurements were inferior 

(the old or the new), and 
2. If sample size was only one (the common case for recurrent QC bias 

checks -- % recovery bias -- every 20 samples) sample size is clearly not 
large enough for a good estimate of the bias. So in the case of sample size 
of one (one couplet producing one RPD) for routine QC checks, one 
would never adjust the data, sample size is simply much too small.   

3. If sample size was only seven (the case herein when only the observer 
changed) sample might still be large enough for a really good estimate of 
the magnitude of the bias. Therefore, if less than 25 couplets of old and 
new measures were compared (this would apply mostly to the sample size 
7-25 comparisons), and IF sample size was adequate to be able to detect at 
least a 10% (or greater) difference between the old and new means with 
90% power and a significance level of 0.10 (as determined with paired 

http://nrpcsharepoint/wrd/water_quality_monitoring/Lists/Water%20Quality%20Statistics/AllItems.aspx
http://nrpcsharepoint/wrd/water_quality_monitoring/Lists/Water%20Quality%20Statistics/AllItems.aspx
http://www.stat.colostate.edu/%7Ensu/starmap/pps/burnham.msts.pdf
ftp://ftp.den.nps.gov/incoming/BRCA/Formatted/SOP_06_cumulative_bias0407.doc
ftp://ftp.den.nps.gov/incoming/BRCA/Formatted/SOP_06_cumulative_bias0407.doc
http://physics.nist.gov/
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sampling sample size calculators) then one might adjust data by the 
average amount of bias change for trend analysis only, not for reporting 
into databases such as STORET. Flunking this criterion would be more 
likely when sample size is less than 25. 

4. If more than 25 couplets (old versus new data) were compared, and the 
RPD exceeded 10%, then the estimates of each mean (old versus new) 
would be considered reliable to adjust data for trend analysis only, again 
not for reporting into databases such as STORET. 

 
 Why limit both Type I error (the risk of deciding there has been a change when 
there has not been one) and the Type II error (the risk of concluding there has been no 
change when there has been a change) to the same %? The answer is that we simply want 
to know whether there has been a change in measurement bias or not, and in this 
situation, there is no particular reason to be more concerned about one type of mistake 
than the other. Why use 0.10 instead of 0.05? For this purpose, we simply consider 90% 
confidence sufficient. If networks want to use 0.05 for alpha to be consistent with 
tradition, that would be acceptable, but then they should probably also consider making 
beta 0.05 too, and keep in mind that using 0.05 instead of 0.1 would drive up required 
sample sizes. 
 Although many seem to understand that changing observers will sometimes bias 
qualitative or semi-qualitative eye-ball estimates (such as % embeddedness of cobles in a 
river bottom) up or down. Less broadly recognized is that even using:  
 

1) what seems to be very similar hardware or  
2) identical calibration solutions  

 
does not guarantee that changes in instruments will not bias the newer readings up or 
down compared to the older readings using the other instrument. In one example, 
oxidation-reduction-potential (ORP) values measured by instruments of two 
manufacturers were very different even though a virtually identical probe and the same 
type of calibration solution were used by both manufacturers. Although the two 
manufacturers also used similar calibration protocols, they recommended use of two 
different reference scales (Pete Penoyer, Personal Communication, NPS, 2006). Those 
who will actually be measuring ORP in groundwater can find more detail in Part B. 
 WRD as well as VS/NRPC Database Staff (Margaret Beer) believe that 
documenting measurement bias after overlapping old and new methods is important 
enough to warrant its own SOP. It would also be acceptable for the monitoring network 
to choose to document this type of information in the Data Analysis SOP, if a good 
rationale for doing so is provided. However, for NPS VS consistency, we recommend 
that a separate Cumulative Measurement Bias SOP be included.  
 Either way, the information is important enough for those who will eventually be 
trying to detect trends that liberal use of “point-too links” should be included in the Data 
Analysis SOP, so that future data users can find this information.  
 Method, equipment, and personnel changes are inevitable in long term monitoring. 
The requirement of overlapping old and new measurement methods is in Oakley et al. 

http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://www.nature.nps.gov/water/wobstaff.cfm
http://science.nature.nps.gov/im/monitor/protocols/ProtocolGuidelines.pdf
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(2003). However, both this requirement and the underlying reason for it are too often 
overlooked.  
 The SOP should detail how long the old and new methods are to be overlapped to 
determine changes in measurement precision, sensitivity, and (especially) measurement 
bias. The following text (or something like it and defendable) is suggested for inclusion 
in a Cumulative Measurement Bias SOP, with crosslink text in the data analysis SOP 
pointing to the SOP where this may be found: 
 

When the Only Change is a Change in Personnel  
Doing the Measurements, Observations, or Ratings: 

 
Single (identical) samples will be measured by old and new personnel at least 7 
times when the only thing changing is staff doing the measuring or observations.  
 

When the Change is a Change in Meters, 
Measurement Instruments, Methods, or SOPs: 

 
At least 30 overlap measurements will be made when a method, SOP, meter, or 
measuring instrument changes.  

 
When the Change is a Change in an Indicator  

Or in One Surrogate Measure to Estimate Another 
 

At least 50 overlap measurements will be made and results recorded. The bigger 
the method or SOP change, the more repeat sampling may be appropriate. Some 
states have gone to great lengths when replacing one indicator with another. For 
example, Oregon created regression derived equations (based on sample sizes 
larger than 50) for estimating fecal coliform values from Escherichia coli values 
(or vice versa) after converting to E. coli monitoring. They monitored both fecal 
and E. coli side by side for six years before deciding that E. coli = about half fecal 
coliforms for Oregon's rivers and streams and becoming comfortable with dropping 
fecal coliforms (C.G. Cude. 2005. Accommodating change of bacterial indicators 
in long term water quality datasets. Jour. Am. Water Resources Assn. 41(1): 47-
54). An indicator change is a bigger change than a staff change or a method 
change. 

 
When the Change is a Change in the Basic Sampling Design 

 
 In this scenario, due to changes in the Target Population, one makes changes in the 
basic sampling design, including changes in the sample frame, or a re-randomization of 
potential samples from an existing (or new) sample frame. For example, one might be 
selecting a totally new mix of samples from a new GRTS draw. One might also decide to 
re-stratify or make some other substantial change in how samples are selected. In these 
cases, to correctly determine trends one needs to know if the changes in sampling design 
changed the results, or if the results changed due to a true change in the target population 
in the environment. If the sample frame was wearing out so that it was no longer a good 
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representation of the target population, the change might decrease a bias that was 
creeping in before the change was made. Unlike the bias that might change due to factors 
described in the paragraphs above (which relate to each single data point), the type of 
bias we are discussing here is on a different level of organization (multiple measurements 
made according to monitoring design). 
 In this case, at least 30-50 overlap measurements will be made and results 
recorded. So for example, 30 samples would be measured based on the old sampling 
design (including the old randomization and stratification scheme), and another 30 
samples would be drawn from the new scheme and measured to determine the differences 
in old way versus new way. 
 In all of the cases listed above, the following shall be archived in the Cumulative 
Measurement Bias SOP:  
 

1. The sample size, standard deviation, and average % bias change from the old 
measurement system to the new, calculated as an average of percent differences 
(PDs, not RSDs or RPDs). If an initial sample size of 30 was chosen as a starting 
point (from the three options listed above), one would do 30 comparison 
measures side by side, calculate a PD for each one, then average the 30 PDs to 
get an average PD for those 30 comparison pairs (this would be considered 
“paired sampling”). Each PD change is calculated by subtracting the old 
measure from the new one, then dividing the difference times the old measure, 
then taking the result times 100.  In other words, PD = [(new - old) / old] * 100. 
By subtracting the old measure from the new one, if the change is positive, the 
PD calculated value will be positive too. 

2. In the case of sample sizes of less than 25 pairs of old and new data, the results 
of a paired t-test of the differences of the two means, based on alpha of 0.10, 
power of no less than 90%.  

3. The precision as reproducibility or repeatability RPDs or RSDs. 
4. Measurement sensitivity, as either a MDL (if some measurements are near or 

below the MDL) or AMS (if all measurements are well above the MDL or if the 
MDL is otherwise not appropriate, see separate discussions herein) for both the 
old and new measurement systems 

5. The date that the overlapping measurements started 
6. The date that the overlapping measurements stopped (some kind of date is 

needed since a change in methods may help explain a jog in a trend line, 
especially if the jog happened just after the change). 

7. The date that the average percent difference bias change from old to new 
measurements was calculated. 

8. All paired raw values, should future statistician desire to normalize values a 
different way when estimating trends. 

9. There should be a clear statement of which way the bias went. If the values for 
the new measurement system are on average higher than those for the old (PDs 
are on average positive), the bias resulting from the change is positive.  

10. Trends are then based on values normalized to the original numbers. If the 
average PD based on the 30 samples was a plus 5% (the new meter on average 
read  5% higher than the old meter,  for purposes of trend analyses, the new 
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values can then be normalized to old by multiplying the new values times the 
calculated fraction of change, so one would multiply the new values times 0.95.. 

 
 Although the average PD is not a proportion, each data point to estimate the 
average PD was a proportion and therefore would have ideally been based on a sample 
size of 25 or above so that each data point that went into the average PD calculation was 
optimally credible (see separate discussion in Section herein entitled “Sample Size 
Needed to Estimate a Single Proportion).” 
 If there are logical reasons why the estimate of bias change should be controlled 
even more tightly than suggested above (for example, the measures are near a magnitude 
that would bring one is near a collapse threshold value for a rare resource), there is 
nothing to prevent a monitoring network from controlling the estimate more tightly. 
Controlling it more tightly would usually simply require larger sample sizes (sometimes 
much larger if the variability was high) for the number of overlap measures.  
 One side benefit of doing overlapping measurements is that one might discover the 
old meter or method is better and decide not to use the new one. Also, if a change in 
personnel changes the bias or precision in unacceptable ways, it is best to find that out as 
early as possible so that additional training or other changes can be made until an 
acceptable result is obtained. 
 Ideally, one would also want the magnitude of bias changes (calculated as per 
above) to be two times lower than minimum detectable differences (MDDs) calculated 
for overall monitoring design sensitivity or AMS. 
  Is the above too much to ask? We do not believe so, and the cost of not 
documenting cumulative measurement change bias is an inability to differentiate true 
environmental trends from measurement or estimation changes. We have seen dramatic 
examples where one could not differentiate trends from method changes in past data from 
the last 50 years, and we would like to avoid that with our new monitoring program. Why 
bother to monitor long term if we don’t do it in ways that allow us to document true 
trends in defendable ways? 
 Often due to inevitable changes in staff and measuring equipment in long term 
monitoring, the data are not comparable enough to differentiate trends from changes 
caused by changes in measurements instruments, staff, or personnel. Therefore, 
overlapping measures need to be done for a period of time to see if measurement bias has 
been introduced from the old measurements to the new. 
 Even volunteer groups are performing these kinds of method change comparisons 
now. One expert recommended that volunteer groups overlap 30-50 paired observations 
when changing salinity methods [P. Bergstrom. 2005. Comparing Four Salinity Methods. 
2005. The Volunteer Monitor 17 (1):21].  The NPS typically does not want to be less 
rigorous than volunteer groups; 25-50 is often a minimum sample size to estimate many 
summary statistics (such as proportions and means) well, so unless otherwise justified, 
overlap at least 30 samples for method or other substantial changes. 
 Even small changes in measurement bias can accumulate and become significant 
over time. “Point-to” notes about where such documentation is should also go with the 
data, as part of metadata notes or introductory notes. 
 The goal would be for someone 100 years later to be able to discover the effect of 
the various changes in measurement bias. These are the types of examples that a future 

http://www.epa.gov/volunteer/newsletter/volmon17no1.pdf
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data user would need to discover to enable that user to separate true trends from method 
changes:  1) 90 years ago there was a method change that resulted +2% change (on 
identical samples) from the previous method, 2) 80 years ago there was another method 
change that resulted in another change of +4% from the method used in the previous 20 
years, 3) 60 years ago there was another method change that resulted in a new plus 3% 
bias, and 4) 75 years ago there was another method change that resulted in a  -1% bias 
from the years just before. In this pretend example, unless the future data user could find 
this type of information, that person might conclude there was a steady upward trend that 
leveled off a bit at the end of the period, when the only changes were really a series of 
bias changes caused by method or SOP changes.  This issue is important enough for long 
term monitoring that some redundancy provided by the multiple “point to” links from 
other places seems prudent. 
 How the data will be normalized could be handled in either SOP with “point-to” 
links from the other. FOR PURPOSES OF TREND ANALYSIS ONLY (not for 
adjusting data before reporting it into a data base such as STORET, usually all data will 
be normalized to the original measurement method. For example, in 2100, data from 
2006, 2020, and 2040, etc. might all be normalized to 2006 data equivalents. If it is 
determined that the original method used in 2006 was too deficient to form a defendable 
normalizing starting point for example, measurement precision, measurement sensitivity, 
and/or measurement bias were bad or incompletely documented, one option would be to 
start over with a new normalization point (say 2020 or 2040) after the deficiencies in 
documentation of measurement performance have been corrected.   
 In summary, it is suggested that the cumulative results of the bias over the years be 
detailed in the Cumulative Measurement Bias SOP in each protocol with “point to” 
hyperlinks from other places people might look, such as the protocol revision log, each 
field and lab SOP for methods, the data management SOP, the data management section 
of the protocol narratives and central monitoring plan, the data acquisition parts of the 
central monitoring plan, the Data Analysis SOP, and the precision and bias discussions in 
the QC SOP. 
 

XIII. Include STORET Details in a Data Management SOP 
 

An updated starting point for those wishing to become familiar with WRD 
guidance is the Water Quality Data Management and Archiving guidance. 

QA/QC results should be reported into STORET or NPSTORET as summarized 
in the Table below (For convenience in comparisons, the following table is in the same 
order as a similar table explaining the technical detail differences between these metrics 
in the separate chapter above entitled “INCLUDE A QA/QC SOP):” 

 
STORET/NPSTORET Reporting of QC Measurement Quality Indicators  

Purpose Description 
Metric 

Acronym 
STORET Note NPSTORET Note 

http://www.nature.nps.gov/water/infoanddata/index.cfm
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Purpose Description 
Metric 

Acronym 
STORET Note NPSTORET Note 

EPA and State 
Low Level 
Sensitivity as 
Detection Limits 
(Usually Lab) 

Lowest value that 
can be 
differentiated 
from zero 

Method 
Detection 
Limit (MDL) 
– for control 
of very low 
level 
sensitivity 

Detection Limit: 
Put MDL in the Detection Limit field 
(APL2 Result Laboratory Data Entry) for 
all applicable results. Use the Description 
field to indicate what type of Detection 
Limit (MDL) was entered. If a result is 
reported as <MDL, set Detection Condition 
to “Not Detected” on R4 Chemical Result 
Data Entry screen. 

Detection Limit: 
Enter MDL for each applicable 
characteristic definition on the Metadata 
Template, Characteristics tab, Detection 
Limit field. Alternatively (and for MDLs 
that change frequently), enter the MDL 
on the Results Template, Detection Limit 
field. If a result is reported as <MDL, set 
Detection Condition to “*Non-Detect” 
on the Results Template, Detection 
Condition field.  In both instances, use 
the Detection/Quantification Limit 
Description field to indicate what type of 
Detection Limit (MDL) was entered. 

USGS Low 
Level Sensitivity 
as Detection 
Limits (Usually 
Lab) 

Lowest value that 
can be 
differentiated 
from zero based 
on long- term data 

Long Term 
Method 
Detection 
Limit (LT-
MDL) – for 
control of very 
low level 
sensitivity 

Detection Limit: 
Put LT-MDL in the Detection Limit field 
(APL2 Result Laboratory Data Entry) for 
all applicable results. Use the Description 
field to indicate what type of Detection 
Limit (USGS LT-MDL) was entered. If a 
result is reported as <LT-MDL, set 
Detection Condition to “Not Detected” on 
R4 Chemical Result Data Entry screen. 

Detection Limit: 
Enter LT-MDL for each applicable 
characteristic definition on the Metadata 
Template, Characteristics tab, Detection 
Limit field. Alternatively (and for LT-
MDLs that change frequently), enter the 
LT-MDL on the Results Template, 
Detection Limit field. If a result is 
reported as <LT-MDL, set Detection 
Condition to “*Non-Detect” on the 
Results Template, Detection Condition 
field.  In both instances, use the 
Detection/Quantification Limit 
Description field to indicate what type of 
Detection Limit (LT-MDL) was entered. 

EPA and State 
Lower 
Quantitative 
Sensitivity as 
Detection Limits 
(Usually Lab) 

Lowest 
Quantitative 
Value 

Minimum 
Level (ML) – 
Values higher 
than ML are 
quantitative 

Quantification Low: 
Put ML in the Quantification Low Limit 
field (APL2 Result Laboratory Data Entry) 
for all applicable results. Use the 
Description field to indicate what type of 
Quantification Limit (ML, LQL, etc.) was 
entered. If a result is reported as <ML, set 
Detection Condition to “Present, below 
Quantification Limit” on R4 Chemical 
Result Data Entry screen. 

Lower Quantification Limit: 
Enter ML for each applicable 
characteristic definition on the Metadata 
Template, Characteristics tab, Lower 
Quantification Limit field. Alternatively 
(and for MLs that change frequently), 
enter the ML on the Results Template, 
Lower Q.L. field. If a result is reported 
as <ML, set Detection Condition to 
“*Present <QL” on the Results 
Template, Detection Condition field.  In 
both instances, use the 
Detection/Quantification Limit 
Description field to indicate what type of 
Lower Quantification Limit (ML, LQL, 
etc.) was entered. 
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Purpose Description 
Metric 

Acronym 
STORET Note NPSTORET Note 

USGS Lower 
Quantitative 
Sensitivity as 
Detection Limits 
(Usually Lab) 

USGS alternative 
to the ML based 
on long term QC 
data and LT-
MDLs  

Long-term 
Reporting 
Level (LRL) – 
Values higher 
than LRL are 
quantitative. 
(Unique to 
USGS 
laboratory) 

.Quantification Low: 
Put LRL in the Quantification Low Limit 
field (APL2 Result Laboratory Data Entry) 
for all applicable results. Use the 
Description field to indicate what type of 
Quantification Limit (USGS LRL) was 
entered. If a result is reported as <LRL, set 
Detection Condition to “Present, below 
Quantification Limit” on R4 Chemical 
Result Data Entry screen. 

Lower Quantification Limit: 
Enter LRL for each applicable 
characteristic definition on the Metadata 
Template, Characteristics tab, Lower 
Quantification Limit field. Alternatively 
(and LRLs that change frequently), enter 
the LRL on the Results Template, Lower 
Q.L. field. If a result is reported as 
<LRL, set Detection Condition to 
“*Present <QL” on the Results 
Template, Detection Condition field. In 
both instances, use the 
Detection/Quantification Limit 
Description field to indicate what type of 
Lower Quantification Limit (USGS 
LRL) was entered. 

Upper 
Quantification 
or Quantitation 
Limit 

Quantification 
refers to the limits 
of an instrument 
or analytical 
process when 
detecting and/or 
quantifying a 
substance 
associated with a 
result value.  High 
represents the 
largest amount of 
the target 
substance that 
could be 
quantified by the 
instrument or 
analytical process; 
Low (ML or 
USGS LRL) 
represents the 
smallest amount.  
Values above the 
minimum and 
below the 
maximum 
quantification 
limits are reported 
as valid numeric 
results. 

 

Quantification High: 
Put upper quantification limit in the 
Quantification High Limit field (APL2 
Result Laboratory Data Entry) for all 
applicable results. Use the Description field 
to indicate what type of upper 
quantification limit was entered. If a result 
is reported as > upper quantification limit, 
set Detection Condition to “Present, above 
Quantification Limit” on R4 Chemical 
Result Data Entry screen. 

Upper Quantification Limit: 
Enter upper quantification limit for each 
applicable characteristic definition on the 
Metadata Template, Characteristics tab, 
Upper Quantification Limit field. 
Alternatively, enter the upper 
quantification limit on the Results 
Template, Upper Q.L. field. If a result is 
reported as > upper quantification limit, 
set Detection Condition to “*Present >QL” 
on the Results Template, Detection 
Condition field.  In both instances, use the 
Detection/Quantification Limit 
Description field to indicate what type of 
Upper Quantification Limit was entered. 
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Purpose Description 
Metric 

Acronym 
STORET Note NPSTORET Note 

Sensitivity 
(Usually Field, 
or whenever 
MDL is N/A) 

Determines 
instrument noise 
in both directions 
(up or down) 

Alternative 
Measurement 
Sensitivity 
(AMS) – 
Lowest change 
possibly real 

Entered in the Description field of the 
Field/Lab Analytical Procedure metadata 
(P3 Organization Field/Lab Analytical 
Procedure Data Entry) and/or the Precision 
+/- field for each result on the R4 Chemical 
Result Data Entry screen. 

Enter alternative measurement sensitivity 
for each applicable characteristic 
definition on the Metadata Template, 
Characteristics tab, Characteristic 
Description Field.  As with STORET, 
you can also enter the alternative 
measurement sensitivity in the Analytical 
Procedure Description field of the 
Metadata Template, 4. Analytical 
Procedures tab. Alternatively, enter the 
alternative measurement sensitivity on 
the Results Template, Precision (+/-) 
field for each result as appropriate. 

AMS+ (Usually 
Field, or 
whenever MDL 
is N/A) 

Includes 
instrument noise 
and natural 
heterogeneity 

Alternative 
Measurement 
Sensitivity+ 
(AMS+) – 
Total 
variability of 
close 
replicates 

Enter in STORET as stated above if no 
other form of AMS is reported. 

Enter in NPSTORET as stated above if 
no other form of AMS is reported. 

Precision (Lab 
and Field) 

Variability of 
repeated measures 
(precision) 

Relative 
Percent 
Difference 
(RPD) – QC 
Precision 
Control 

Enter the results on two separate activities. 
First activity category (FA2 Sample Data 
Entry) is ‘Routine Sample’; second activity 
category is ‘Field Replicate/Duplicate’. 
Compute the Relative Percent Difference, 
and, optionally, include the Relative 
Percent Difference in the Comments field 
on the R4 Chemical Result Data Entry 
screen for each applicable result. 

Enter the results on two separate activities 
on the Results Template. First activity 
type is ‘Sample-Routine’; second activity 
type is ‘Quality Control Sample-Field 
Replicate’. Compute the Relative Percent 
Difference, and, optionally, include the 
Relative Percent Difference in the 
Comment field on the Results Template 
for each applicable result. Alternatively, 
use the Reports & Stats Template, 
Statistics tab, Precision Analysis to 
compute Relative Percent Difference and 
display these values in a summary report. 

Precision+ 
(Usually for 
Field 
Measurements 
Only) 

Variability of 
repeated measures 
(precision +) + = 
potentially some 
additional true 
variability (two 
samples not one) 

Relative 
Percent 
Difference 
(RPD) – QC 
Precision+ 
Control  

Enter in STORET as stated above if no 
other form of Precision is reported. 

Enter in NPSTORET as stated above if no 
other form of Precision is reported. 



 172

Purpose Description 
Metric 

Acronym 
STORET Note NPSTORET Note 

Bias (Lab and 
Field) 

Difference from 
standard (bias) 

Percent 
Difference 
(PD) – QC 
Bias Control 

Select the appropriate activity category 
(e.g. ‘Field Spike’) on the FA2 Sample 
Data Entry screen and enter the results. 
Compute the Percent Difference from the 
expected value for each result and include 
the Percent Difference in the Comments 
field on the R4 Chemical Result Data Entry 
screen for each applicable result. 

Select the appropriate activity type (e.g. 
‘Quality Control Sample-Field Spike’) on 
the Results Template and enter the results. 
Compute the Percent Difference from the 
expected value for each result and include 
the Percent Difference in the Comment 
field on the Results Template for each 
applicable result. 

Blank Control 
Bias (Usually 
for Lab 
Measures Only) 

Difference 
between 
measurement 
result and blank 
sample expected 
result (usually no 
greater than the 
MDL) 

Percent 
Difference 
(PD) – QC 
Blank Control 
Bias 

Select the appropriate activity category 
(e.g. ‘Field Blank’) on the FA2 Sample 
Data Entry screen and enter the results. 
Compute the Percent Difference from the 
expected value (e.g. MDL) for each result 
and include the Percent Difference in the 
Comments field on the R4 Chemical Result 
Data Entry screen for each applicable 
result. Record both the measured value and 
the MDL. 

Select the appropriate activity type (e.g. 
‘Quality Control Sample-Field Blank’) on 
the Results Template and enter the results. 
Compute the Percent Difference from the 
expected value (e.g. MDL) for each result 
and include the Percent Difference in the 
Comment field on the Results Template 
for each applicable result. Record both the 
measured value and the MDL. 

 
NPS monitoring networks may want to copy parts (or all) of the table above into 

their Data Management SOP attached to each protocol. 
Documentation and planning in the SOP needs to include matching the network’s 

characteristics/parameters with the official standardized EPA list of 389,007 (as of 
12/1/2005) characteristics (found in tblDef_TSRCHAR in NPSTORET (Storet 
Characteristics Tables). For questions, contact Dean_Tucker@NPS.GOV). How the data 
collected will be archived in STORET and NPSTORET should be detailed in a Data 
Management SOP. 

The Data Management SOP needs to include a data dictionary (DD) that clearly 
defines what is in each field. Aim for the sweet spot between too long (hard to use) and 
too short (not clear). This is a hard balance but still worthy of effort. STORET, 
NPSTORET, the NWQMC 2006 Water Quality Data Elements (= both data and 
metadata), and Part B (the longer version) have all been criticized as being too long. But 
when their authors tried to remove things to shorten them, the new versions were 
criticized as being too short or incomplete, a catch 22. Regardless of the difficulty, the 
network goal is to make the data dictionary clear, but not too long. 

 
End of Part B lite. More detail on each of the topics in Part B lite is found in the long 
version of Part B at http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc. 

http://nrdata.nps.gov/Programs/Water/storetcharacteristics/storetcharacteristics.zip
http://nrdata.nps.gov/Programs/Water/storetcharacteristics/storetcharacteristics.zip
mailto:Dean_Tucker@NPS.GOV
http://acwi.gov/methods/pubs/wdqe_pubs/wqde_trno3.pdf
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
http://science.nature.nps.gov/im/monitor/protocols/wqPartB.doc
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